Association between MRI structural features and cognitive measures in Pediatric Multiple Sclerosis

被引:0
|
作者
Amoroso, N. [1 ,2 ]
Bellotti, R. [1 ,2 ]
Fanizzi, A. [5 ]
Lombardi, A. [2 ,6 ]
Monaco, A.
Liguori, M. [3 ]
Margari, L. [4 ]
Simone, M. [4 ]
Viterbo, R. G. [4 ]
Tangaro, S. [2 ]
机构
[1] Univ Bari, Dipartimento Interateneo Fis, Bari, Italy
[2] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy
[3] CNR, Inst Biomed Technol, Bari, Italy
[4] Univ Bari, Dept Basic Sci Neurosci & Sense Organs, Bari, Italy
[5] IRCCS, Ist Tumori Giovanni Paolo 2, Bari, Italy
[6] Politecn Bari, Dipartimento Ingn Elettr & Informaz, Bari, Italy
来源
关键词
Multiple Sclerosis; structural MRI; FreeSurfer; Machine learning; CLINICAL-FEATURES; CHILDHOOD; SELECTION; CRITERIA;
D O I
10.1117/12.2273834
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Multiple sclerosis (MS) is an inflammatory and demyelinating disease associated with neurodegenerative processes that lead to brain structural changes. The disease affects mostly young adults, but 3 - 5% of cases has a pediatric onset (POMS). Magnetic Resonance Imaging (MRI) is generally used for diagnosis and follow-up in MS patients, however the most common MRI measures (e.g. new or enlarging T2-weighted lesions, T1-weighted gadolinium enhancing lesions) have often failed as surrogate markers of MS disability and progression. MS is clinically heterogenous with symptoms that can include both physical changes (such as visual loss or walking difficulties) and cognitive impairment. 30-50% of POMS experience prominent cognitive dysfunction. In order to investigate the association between cognitive measures and brain morphometry, in this work we present a fully automated pipeline for processing and analyzing MRI brain scans. Relevant anatomical structures are segmented with FreeSurfer; besides, statistical features are computed. Thus, we describe the data referred to 12 patients with early POMS (mean age at MRI: 15.5 +/- 2.7 years) with a set of 181 structural features. The major cognitive abilities measured are verbal and visuo-spatial learning, expressive language and complex attention. Data was collected at the Department of Basic Sciences, Neurosciences and Sense Organs, University of Bari, and exploring different abilities like the verbal and visuo-spatial learning, expressive language and complex attention. Different regression models and parameter configurations are explored to assess the robustness of the results, in particular Generalized Linear Models, Bayes Regression, Random Forests, Support Vector Regression and Artificial Neural Networks are discussed.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Cognitive Impairment in Multiple Sclerosis: A Multiparametric Structural and Functional MRI Study
    Vizzino, C.
    Riccitelli, G. C.
    Pagani, E.
    Valsasina, P.
    Preziosa, P.
    Marchesi, O.
    Filippi, M.
    Rocca, M. A.
    EUROPEAN JOURNAL OF NEUROLOGY, 2020, 27 : 434 - 434
  • [22] Association between measures of trochlear morphology and structural features of patellofemoral joint osteoarthritis on MRI: The MOST study
    Stefanik, Joshua J.
    Roemer, Frank W.
    Zumwalt, Ann C.
    Zhu, Yanyan
    Gross, K. Douglas
    Lynch, John A.
    Frey-Law, Laura A.
    Lewis, Cora E.
    Guermazi, Ali
    Powers, Christopher M.
    Felson, David T.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2012, 30 (01) : 1 - 8
  • [23] Structural Connectivity Abnormalities Underlying Cognitive Impairment in Pediatric Multiple Sclerosis
    De Meo, Ermelinda
    Pagani, Elisabetta
    Moiola, Lucia
    Ghezzi, Angelo
    Veggiotti, Pierangelo
    Capra, Ruggero
    Amato, Maria Pia
    Vacchi, Laura
    Fiorino, Agnese
    Pippolo, Lorena
    Pera, Maria Carmela
    Comi, Giancarlo
    Falini, Andrea
    Filippi, Massimo
    Rocca, Maria A.
    NEUROLOGY, 2017, 88
  • [24] Structural connectivity abnormalities underlying cognitive impairment in pediatric multiple sclerosis
    De Meo, E.
    Rocca, M. A.
    Pagani, E.
    Moiola, L.
    Ghezzi, A.
    Veggiotti, P.
    Capra, R.
    Amato, M. P.
    Vacchi, L.
    Fiorino, A.
    Pippolo, L.
    Pera, M. C.
    Comi, G.
    Falini, A.
    Filippi, M.
    MULTIPLE SCLEROSIS JOURNAL, 2016, 22 : 412 - 413
  • [25] Structural connectivity abnormalities underlying cognitive impairment in pediatric multiple sclerosis
    de Meo, E.
    Pagani, E.
    Moiola, L.
    Ghezzi, A.
    Veggiotti, P.
    Capra, R.
    Amato, M. P.
    Vacchi, L.
    Fiorino, A.
    Pippolo, L.
    Pera, M. C.
    Comi, G.
    Falini, A.
    Filippi, M.
    Rocca, M. A.
    EUROPEAN JOURNAL OF NEUROLOGY, 2017, 24 : 84 - 84
  • [26] Spinal MRI in Pediatric Multiple Sclerosis
    Makhija, Monica
    Branson, Helen
    Shroff, Manohar
    Magalhaes, Sandra
    Banwell, Brenda
    NEUROLOGY, 2009, 72 (11) : A371 - A371
  • [27] MRI in the evaluation of pediatric multiple sclerosis
    Banwell, Brenda
    Arnold, Douglas L.
    Tillema, Jan-Mendelt
    Rocca, Maria A.
    Filippi, Massimo
    Weinstock-Guttman, Bianca
    Zivadinov, Robert
    Sormani, Maria Pia
    NEUROLOGY, 2016, 87 (09) : S88 - S96
  • [28] MRI in the diagnosis of pediatric multiple sclerosis
    Callen, D. J. A.
    Shroff, M. M.
    Branson, H. M.
    Lotze, T.
    Li, D. K.
    Stephens, D.
    Banwell, B. L.
    NEUROLOGY, 2009, 72 (11) : 961 - 967
  • [29] Cognitive impairment and MRI features in benign multiple sclerosis: preliminary results.
    Santos, G.
    Correa de Araujo, N. E.
    Ferreira Vasconcelos, C. C.
    Moreira de Souza, L. A.
    Alves Paes, R.
    Rodrigues Cerqueira, D. -N.
    Monteiro, T. C.
    Gomes Camargo, S. M. G.
    Hampshire Araujo, F.
    Calvet Kallembach, J.
    Santos Thuler, L. C.
    Papais Alvarenga, R.
    MULTIPLE SCLEROSIS JOURNAL, 2012, 18 (12) : 1830 - 1830
  • [30] Cognitive Fatigue In Multiple Sclerosis: Correlation Between Objective and Subjective Measures
    Ramamurthy, Guhan
    Ranganathan, Lakshmi Narasimhan
    Kanthimathinathan, Shunmugasundaram
    Govindarajan, Sarala
    Maheswari, E. Uma
    Marimuthu, Jawahar
    Bhoopathy, R. M.
    NEUROLOGY, 2018, 90