QUARTZ: Quantitative Analysis of Retinal Vessel Topology and size - An automated system for quantification of retinal vessels morphology

被引:54
|
作者
Fraz, M. M. [1 ]
Welikala, R. A. [2 ]
Rudnicka, A. R. [3 ]
Owen, C. G. [3 ]
Strachan, D. P. [3 ]
Barman, S. A. [2 ]
机构
[1] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Islamabad, Pakistan
[2] Kingston Univ London, Fac Sci Engn & Comp, London, England
[3] St Georges Univ London, Populat Hlth Res Inst, London, England
关键词
Retinal image processing; Automated analysis; Retinal vessel morphology; Vessel quantification; Feature extraction; Epidemiological studies; Screening programs; Large population studies; CARDIOVASCULAR RISK-FACTORS; OPTIC DISC DETECTION; IMAGE-ANALYSIS; 10-YEAR-OLD CHILDREN; VASCULAR CALIBER; DIAMETERS; CLASSIFICATION; ARTERIOLAR; PREVALENCE; TORTUOSITY;
D O I
10.1016/j.eswa.2015.05.022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retinal vessels are easily and non-invasively imaged using fundus cameras. Growing evidence including longitudinal evidence, suggests morphological changes in retinal vessels are early physio-markers of cardio-metabolic risk and outcome (as well as other disease processes). However, data from large population based studies are needed to examine the nature of these morphological associations. Several retinal image analysis (RIA) systems have been developed. While these provide a number of retinal vessel indices, they are often restricted in the area of analysis, and have limited automation, including the ability to distinguish between arterioles and venules. With the aim of developing reliable, automated, efficient retinal image analysis (RIA) software, generating a rich quantification of retinal vastulature in large volumes of fundus images, we present QUARTZ (Quantitative Analysis of Retinal Vessel Topology and size), a novel automated system for processing and analysing retinal images. QUARTZ consists of modules for vessel segmentation, width measurement and angular change at each vessel centreline pixel with sub-pixel accuracy, computing local vessel orientation, optic disc localisation, arteriole/venule classification, tortuosity measurement, and exporting the quantitative measurements in various output file formats. The performance metrics of the algorithms incorporated in QUARTZ are validated on a number of publically available retinal databases (including DRIVE, STARE, CHASE_DB1, INSPIRE-AVR, and DIARETDB1). QUARTZ performs well in terms of segmentation accuracy, calibre measurement, optic disc and arteriole/venule recognition. The system provides a rich quantification of retinal vessel morphology, which has potential medical applications in identifying those at high risk, so that prophylactic measure can be initiated before onset of overt disease. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7221 / 7234
页数:14
相关论文
共 50 条
  • [1] AUTOMATED QUANTIFICATION OF MORPHOLOGIC PROPERTIES OF THE HUMAN RETINAL VESSEL SYSTEM
    KAUPP, A
    DOLEMEYER, A
    WOLF, S
    TOONEN, H
    ADAMS, L
    AREND, O
    WILZECK, R
    SCHLOSSER, R
    MEYEREBRECHT, D
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1993, 34 (04) : 1396 - 1396
  • [2] AUTOMATED SYSTEM FOR RETINAL VESSEL SEGMENTATION
    Ahamed, Akyas T. U.
    Jothish, Abhin
    Johnson, Geo
    Krishna, Santhosh B., V
    [J]. PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 717 - 722
  • [3] The assessment of vessel segmentation reproducibility using Automated Retinal Vascular Morphology Quantification (Automorph)
    Somfai, Gabor Mark
    Giesser, Samuel
    Sommer, Chiara
    Becker, Matthias
    Turgut, Ferhat
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (09)
  • [4] Automated Quantification of Retinal Vessel Morphometry in the UK Biobank Cohort
    Welikala, R. A.
    Fraz, M. M.
    Habib, M. M.
    Daniel-Tong, S.
    Yates, M.
    Fosters, P. J.
    Whincup, P. H.
    Rudnicka, A. R.
    Owen, C. G.
    Strachan, D. P.
    Barman, S. A.
    [J]. PROCEEDINGS OF THE 2017 SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA 2017), 2017,
  • [5] A computer system for automated retinal microvascular architecture quantification
    Thom, SA
    Gao, X
    Stanton, AV
    Chapman, JN
    Bharath, A
    Hughes, AD
    [J]. JOURNAL OF HYPERTENSION, 1998, 16 : S106 - S106
  • [6] Quantitative Analysis of Conjunctival and Retinal Vessels in Fabry Disease
    Sodi, Andrea
    Lenzetti, Chiara
    Bacherini, Daniela
    Finocchio, Lucia
    Verdina, Tommaso
    Borg, Isabella
    Cipollini, Francesca
    Patwary, Fatema Ullah
    Tanini, Ilaria
    Zoppetti, Claudia
    Rizzo, Stanislao
    Virgili, Gianni
    [J]. JOURNAL OF OPHTHALMOLOGY, 2019, 2019
  • [7] Development of an automated system to classify retinal vessels into arteries and veins
    Saez, Marc
    Gonzalez-Vazquez, Sonia
    Gonzalez-Penedo, Manuel
    Antonia Barcelo, Maria
    Pena-Seijo, Marta
    Coll de Tuero, Gabriel
    Pose-Reino, Antonio
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) : 367 - 376
  • [8] AUTOMATIC IMAGE ANALYZER TO ASSESS RETINAL VESSEL CALIBER (ALTAIR) TOOL VALIDATION FOR THE ANALYSIS OF RETINAL VESSELS
    Garcia-Ortiz, L.
    Perez-Ramos, H.
    Chamoso-Santos, P.
    Recio-Rodriguez, J. I.
    Garcia-Garcia, A.
    Maderuelo-Fernandez, J. A.
    Gomez-Sanchez, L.
    Martinez-Perez, P.
    Rodriguez-Martin, C.
    De Cabo-Laso, A.
    Sanchez-Salgado, B.
    Rodriguez-Gonzalez, S.
    De Paz-Santana, J. F.
    Corchado-Rodriguez, J. M.
    Gomez-Marcos, M. A.
    [J]. JOURNAL OF HYPERTENSION, 2016, 34 : E160 - E160
  • [9] Automated identification of retinal vessels using a multiscale directional contrast quantification (MDCQ) strategy
    Zhen, Yi
    Gu, Suicheng
    Meng, Xin
    Zhang, Xinyuan
    Zheng, Bin
    Wang, Ningli
    Pu, Jiantao
    [J]. MEDICAL PHYSICS, 2014, 41 (09)
  • [10] AutoMorph: Automated Retinal Vascular Morphology Quantification Via a Deep Learning Pipeline
    Zhou, Yukun
    Wagner, Siegfried K.
    Chia, Mark A.
    Zhao, An
    Woodward-Court, Peter
    Xu, Moucheng
    Struyven, Robbert
    Alexander, Daniel C.
    Keane, Pearse A.
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2022, 11 (07):