AutoMorph: Automated Retinal Vascular Morphology Quantification Via a Deep Learning Pipeline

被引:27
|
作者
Zhou, Yukun [1 ,2 ,3 ,5 ]
Wagner, Siegfried K. [2 ,3 ]
Chia, Mark A. [2 ,3 ]
Zhao, An [1 ,4 ]
Woodward-Court, Peter [2 ,3 ,6 ]
Xu, Moucheng [1 ,5 ]
Struyven, Robbert [2 ,3 ,5 ]
Alexander, Daniel C. [1 ,4 ]
Keane, Pearse A. [2 ,3 ]
机构
[1] UCL, Ctr Med Image Comp, London, England
[2] Moorfields Eye Hosp NHS Fdn Trust, NIHR Biomed Res Ctr Ophthalmol, London, England
[3] UCL Inst Ophthalmol, London, England
[4] UCL, Dept Comp Sci, London, England
[5] UCL, Dept Med Phys & Biomed Engn, London, England
[6] UCL, Inst Hlth Informat, London, England
来源
基金
英国工程与自然科学研究理事会;
关键词
retinal fundus photograph; vascular analysis; deep learning; oculomics; external validation; CARDIOVASCULAR RISK-FACTORS; ARTERY-VEIN CLASSIFICATION; VESSEL DIAMETERS; MICROVASCULAR CHARACTERISTICS; 10-YEAR-OLD CHILDREN; BLOOD-VESSELS; CALIBER; TOPOLOGY; SEGMENTATION; TORTUOSITY;
D O I
10.1167/tvst.11.7.12
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To externally validate a deep learning pipeline (AutoMorph) for automated analysis of retinal vascular morphology on fundus photographs. AutoMorph has been made publicly available, facilitating widespread research in ophthalmic and systemic diseases. Methods: AutoMorph consists of four functionalmodules: image preprocessing, image quality grading, anatomical segmentation (including binary vessel, artery/vein, and optic disc/cup segmentation), and vascular morphology feature measurement. Image quality grading and anatomical segmentation use the most recent deep learning techniques. We employ a model ensemble strategy to achieve robust results and analyze the prediction confidence to rectify false gradable cases in image quality grading. We externally validate the performance of each module on several independent publicly available datasets. Results: The EfficientNet-b4 architecture used in the image grading module achieves performance comparable to that of the state of the art for EyePACS-Q, with an F-1-score of 0.86. The confidence analysis reduces the number of images incorrectly assessed as gradable by 76%. Binary vessel segmentation achieves an F-1-score of 0.73 on AV-WIDE and 0.78 on DR HAGIS. Artery/vein scores are 0.66 on IOSTAR-AV, and disc segmentation achieves 0.94 in IDRID. Vascular morphology features measured from the AutoMorph segmentation map and expert annotation show good to excellent agreement. Conclusions: AutoMorph modules perform well even when external validation data show domain differences from training data (e.g., with different imaging devices). This fully automated pipeline can thus allow detailed, efficient, and comprehensive analysis of retinal vascular morphology on color fundus photographs. Translational Relevance: BymakingAutoMorph publicly available and open source, we hope to facilitate ophthalmic and systemic disease research, particularly in the emerging field of oculomics.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Exploring Retinal Vascular Morphology via A Deep Learning Pipeline
    Zhou, Yukun
    Wagner, Siegfried
    Chia, Mark
    Woodward-Court, Peter
    Alexander, Daniel
    Keane, Pearse Andrew
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [2] The assessment of vessel segmentation reproducibility using Automated Retinal Vascular Morphology Quantification (Automorph)
    Somfai, Gabor Mark
    Giesser, Samuel
    Sommer, Chiara
    Becker, Matthias
    Turgut, Ferhat
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (09)
  • [3] Retinal based Automated Healthcare Framework via Deep Learning
    Das, Pritom R.
    Rakshitha, G.
    Juvanna, I.
    Subramanian, D. Venkat
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 93 - 97
  • [4] Fully automated quantification of retinal cones and anterior chamber cells using deep learning
    Wu, Yue
    Xiao, Sa
    Rokem, Ariel
    Lee, Cecilia S.
    Wilson, Leslie
    Pepple, Kathryn
    Sabesan, Ramkumar
    Lee, Aaron Y.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [5] Automated Retinal Fluid Volume Quantification A Nod to Present and Future Applications of Deep Learning
    Lee, Aaron Y.
    Yuan, Amy
    [J]. JAMA OPHTHALMOLOGY, 2021, 139 (07) : 741 - 742
  • [6] Deep Learning for Automated Quantification of Tumor Phenotypes
    Hosny, A.
    Coroller, T.
    Grossmann, P.
    Parmar, C.
    Zeleznik, R.
    Kumar, A.
    Bussink, J.
    Gillies, R.
    Mak, R.
    Aerts, H.
    [J]. MEDICAL PHYSICS, 2018, 45 (06) : E637 - E637
  • [7] Retinal vascular tree morphology: A semi-automatic quantification
    Martinez-Perez, ME
    Hughes, AD
    Stanton, AV
    Thom, SA
    Chapman, N
    Bharath, AA
    Parker, KH
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (08) : 912 - 917
  • [8] Deep Learning for Automated Sorting of Retinal Photographs
    Rim, Tyler Hyungtaek
    Da Soh, Zhi
    Tham, Yih-Chung
    Yang, Henrik Hee Seung
    Lee, Geunyoung
    Kim, Youngnam
    Nusinovici, Simon
    Ting, Daniel Shu Wei
    Wong, Tien Yin
    Cheng, Ching-Yu
    [J]. OPHTHALMOLOGY RETINA, 2020, 4 (08): : 793 - 800
  • [9] An Automated Deep Reinforcement Learning Pipeline for Dynamic Pricing
    Afshar R.R.
    Rhuggenaath J.
    Zhang Y.
    Kaymak U.
    [J]. IEEE Transactions on Artificial Intelligence, 2023, 4 (03): : 428 - 437
  • [10] Automated Quantification of Traffic Particulate Emissions via an Image Analysis Pipeline
    Ho, Kong Yuan
    Lim, Chin Seng
    Kattar, Mathena A.
    Boppana, Bharathi
    Yu, Liya
    Ooi, Chin Chun
    [J]. 2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 137 - 142