Chaos and domain formation in an inhomogeneous coupled map lattice

被引:0
|
作者
Funakoshi, M [1 ]
Higuchi, R [1 ]
Yamanaka, M [1 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Appl Math & Phys, Sakyo Ku, Kyoto 6068501, Japan
来源
3RD INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS | 1998年
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Domain formation and suppression of chaos due to the inhomogeneity in a diffusively coupled map lattice (CML) are examined. The parameter characterizing the dynamics of each element is changed at every Mth site. It is found that for appropriately chosen values of coupling constant and this parameter the spatio-temporal chaos in a homogeneous CML can be suppressed into a domain structure with regular or weakly chaotic time evolution. Although this suppression is possible even for quite large M, the time step required to reach the domain structure from a random initial state increases with M exponentially.
引用
收藏
页码:650 / 653
页数:4
相关论文
共 50 条
  • [21] Controlling localized spatiotemporal chaos in a one-dimensional coupled map lattice
    Parmananda, P
    Jiang, Y
    PHYSICS LETTERS A, 1997, 231 (3-4) : 159 - 163
  • [22] ABSENCE OF CHAOS IN A SELF-ORGANIZED CRITICAL COUPLED MAP LATTICE - COMMENT
    RUXTON, GD
    PHYSICAL REVIEW E, 1995, 52 (02): : 2114 - 2115
  • [23] ABSENCE OF CHAOS IN A SELF-ORGANIZED CRITICAL COUPLED MAP LATTICE - REPLY
    JANOSI, IM
    SCHEURING, I
    PHYSICAL REVIEW E, 1995, 52 (02): : 2116 - 2117
  • [24] A coupled map lattice model for rheological chaos in sheared nematic liquid crystals
    Kamil, S. M.
    Menon, Gautam I.
    Sinha, Sudeshna
    CHAOS, 2010, 20 (04)
  • [25] Analysis of minimal pinning density for controlling spatiotemporal chaos of a coupled map lattice
    Kwon, YS
    Ham, SW
    Lee, KK
    PHYSICAL REVIEW E, 1997, 55 (02): : 2009 - 2012
  • [26] Coupled map lattice for the spiral pattern formation in astronomical objects
    Nozawa, Erika
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 405
  • [27] Coupled map lattice model for pattern formation in diffusion field
    Ohtaki, M
    Honjo, H
    Sakaguchi, H
    STATISTICAL PHYSICS, 2000, 519 : 256 - 258
  • [28] Dynamic Characterizers of Spatiotemporal Intermittency and Mapping to Cellular Automaton : An Inhomogeneous Coupled Map Lattice
    Biswas, Sujay
    Das, Alaka
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [29] ORDER AND CHAOS IN A 2D LOTKA-VOLTERRA COUPLED MAP LATTICE
    SOLE, RV
    VALLS, J
    PHYSICS LETTERS A, 1991, 153 (6-7) : 330 - 336
  • [30] Controlling spatiotemporal chaos of coupled bistable map lattice systems using constant bias
    Yue, LJ
    Shen, K
    PHYSICS LETTERS A, 2005, 340 (1-4) : 170 - 174