Region-based image retrieval in the compressed domain using shape-adaptive DCT

被引:13
|
作者
Belalia, Amina [1 ]
Belloulata, Kamel [1 ]
Kpalma, Kidiyo [2 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Dept Elect, Fac Engn, BP 89, Sidibel Abbes, Algeria
[2] IETR, UEB INSA, UMR 6164, F-35708 Rennes, France
关键词
Content-based image retrieval (CBIR); DCT; Segmentation; Region-based image retrieval (RBIR); Semantic image retrieval; SA-DCT; DISCRETE COSINE TRANSFORM; EXTRACTION; COLOR; SEGMENTATION; RECOGNITION; TEXTURE; DESCRIPTOR; FEATURES;
D O I
10.1007/s11042-015-3026-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Content-based image retrieval (CBIR) has drawn substantial research and many traditional CBIR systems search digital images in a large database based on features, such as color, texture and shape of a given query image. A majority of images are stored in compressed format and most of compression technologies adopt different kinds of transforms to achieve compression. Therefore, features can be extracted directly from images in compressed format by using, for example, discrete cosine transform (DCT) for JPEG compressed images. Region-based image retrieval (RBIR) is an image retrieval approach which focuses on contents from regions of images, instead of the content from the entire image in early CBIR. Although RBIR approaches attempt to solve the semantic gap problem existed in global low-level features in CBIR by using local low-level features based on regions of images. This paper proposes a new RBIR approach using Shape adaptive discrete cosine transform (SA-DCT). At a bottom level, local features are constructed from the coefficients of quantized block transforms (low-level features) for each region. Quantization acts for the concentration of block-wise information in a more condense way, which is highly desirable for the retrieval tasks. At an intermediate level, histograms of local image features are used as descriptors of statistical information. Finally, at the top level, the combination of histograms from different image regions (objects) is defined as a way to incorporate high-level semantic information. In this retrieval system, an image has a prior segmentation alpha plane, which is defined exactly as in MPEG-4. Therefore, an image is represented by segmented regions, each of which is associated with a feature vector derived from DCT and SA-DCT coefficients. Users can select any region as the main theme of the query image. The similarity between a query image and any database image is ranked according to a same similarity measure computed from the selected regions between two images. For those images without distinctive objects and scenes, users can still select the whole image as the query condition. The experimental results show that the proposed approach is able to identify main objects and reduce the influence of background in the image, and thus improve the performance of image retrieval in comparison with a conventional CBIR based on DCT.
引用
收藏
页码:10175 / 10199
页数:25
相关论文
共 50 条
  • [31] Significant region-based image retrieval
    Manipoonchelvi, P.
    Muneeswaran, K.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (08) : 1795 - 1804
  • [32] A Review of Region-Based Image Retrieval
    Wei Huang
    Yan Gao
    Kap Luk Chan
    Journal of Signal Processing Systems, 2010, 59 : 143 - 161
  • [33] Region-Based Image Retrieval Revisited
    Hinami, Ryota
    Matsui, Yusuke
    Satoh, Shin'ichi
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 528 - 536
  • [34] Learning in region-based image retrieval
    Jing, F
    Li, MJ
    Zhang, L
    Zhang, HJ
    Zhang, B
    IMAGE AND VIDEO RETRIEVAL, PROCEEDINGS, 2003, 2728 : 206 - 215
  • [35] A Review of Region-Based Image Retrieval
    Huang, Wei
    Gao, Yan
    Chan, Kap Luk
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2010, 59 (02): : 143 - 161
  • [36] Integrated region-based image retrieval
    Wong, S
    INFORMATION PROCESSING & MANAGEMENT, 2002, 38 (06) : 849 - 850
  • [37] Adaboost in region-based image retrieval
    Dai, SY
    Zhang, YJ
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 429 - 432
  • [38] Object-based stereo video compression using fractals and shape-adaptive DCT
    Belloulata, Kamel
    Belalia, Amina
    Zhu, Shiping
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2014, 68 (07) : 687 - 697
  • [39] Region-based image retrieval using color coherence region vectors
    Xu, HL
    Xu, D
    Guan, Y
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 761 - 764
  • [40] Catadioptric images compression using an adapted neighborhood and the shape-adaptive DCT
    Djamal Alouache
    Zohra Ameur
    Djemaa Kachi
    Multimedia Tools and Applications, 2020, 79 : 6781 - 6797