MERS coronavirus nsp1 participates in an efficient propagation through a specific interaction with viral RNA

被引:45
|
作者
Terada, Yutaka [1 ]
Kawachi, Kengo [1 ,2 ]
Matsuura, Yoshiharu [2 ]
Kamitani, Wataru [1 ,3 ]
机构
[1] Osaka Univ, Lab Clin Res Infect Dis, Osaka 5650871, Japan
[2] Osaka Univ, Res Inst Microbial Dis, Dept Mol Virol, Osaka 5650871, Japan
[3] Natl Inst Biomed Innovat Hlth & Nutr, Tsukuba Primate Res Ctr, Tsukuba, Ibaraki 3050843, Japan
关键词
Coronavirus; MERS-CoV; Nspl; RNA recognition; Viral replication; HOST GENE-EXPRESSION; CIS-ACTING ELEMENT; STEM-LOOP-IV; NONSTRUCTURAL PROTEIN-1; SARS-CORONAVIRUS; 5'-UNTRANSLATED REGION; DROMEDARY CAMELS; RATIONAL DESIGN; VIRUS; STRATEGY;
D O I
10.1016/j.virol.2017.08.026
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
MERS-CoV is the only lethal human CoV still endemic in the Arabian Peninsula and neither vaccine nor therapeutics against MERS-CoV infection is available. The nspl of CoV is thought to be a major virulence factor because it suppresses protein synthesis through the degradation of host mRNA. In contrast, viral RNA circumvents the nspl-mediated translational shutoff for an efficient propagation. In this study, we identified amino acid residue in MERS-CoV nspl that differ from those of SARS-CoV nspl, and that appear to be crucial for circumventing the translational shutoff. In addition, reverse genetics analysis suggested the presence of a cisacting element at the 5 '-terminus of the nspl-coding region, which contributes to the specific recognition of viral RNA that is required for an efficient viral replication. Our results suggest the CoVs share a common mechanism for circumventing the nsp 1-mediated translational shutoff.
引用
收藏
页码:95 / 105
页数:11
相关论文
共 32 条
  • [21] SND1 binds SARS-CoV-2 negative-sense RNA and promotes viral RNA synthesis through NSP9
    Schmidt, Nora
    Ganskih, Sabina
    Wei, Yuanjie
    Gabel, Alexander
    Zielinski, Sebastian
    Keshishian, Hasmik
    Lareau, Caleb A.
    Zimmermann, Liv
    Makroczyova, Jana
    Pearce, Cadence
    Krey, Karsten
    Hennig, Thomas
    Stegmaier, Sebastian
    Moyon, Lambert
    Horlacher, Marc
    Werner, Simone
    Aydin, Jens
    Olguin-Nava, Marco
    Potabattula, Ramya
    Kibe, Anuja
    Doelken, Lars
    Smyth, Redmond P.
    Caliskan, Neva
    Marsico, Annalisa
    Krempl, Christine
    Bodem, Jochen
    Pichlmair, Andreas
    Carr, Steven A.
    Chlanda, Petr
    Erhard, Florian
    Munschauer, Mathias
    CELL, 2023, 186 (22) : 4834 - +
  • [22] The efficient packaging of Venezuelan equine encephalitis virus-specific RNAs into viral particles is determined by nsP1-3 synthesis
    Volkova, E
    Gorchakov, R
    Frolov, I
    VIROLOGY, 2006, 344 (02) : 315 - 327
  • [23] An attenuating mutation in nsP1 of the Sindbis-group virus SAAR86 accelerates nonstructural protein processing and up-regulates viral 26S RNA synthesis
    Heise, MT
    White, LJ
    Simpson, DA
    Leonard, C
    Bernard, KA
    Meeker, RB
    Johnston, RE
    JOURNAL OF VIROLOGY, 2003, 77 (02) : 1149 - 1156
  • [24] Broad-Spectrum Antiviral Agents against SARS-CoV-2 Variants Inhibit the Conserved Viral Protein Nsp1-RNA Interaction
    Byun, Wan Gi
    Lee, Minha
    Ko, Meehyun
    Lee, Ji Hyae
    Yi, Sihyeong
    Lee, Jinah
    Kim, Seungtaek
    Park, Seung Bum
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (47)
  • [25] Japanese Encephalitis Virus Core Protein Inhibits Stress Granule Formation through an Interaction with Caprin-1 and Facilitates Viral Propagation
    Katoh, Hiroshi
    Okamoto, Toru
    Fukuhara, Takasuke
    Kambara, Hiroto
    Morita, Eiji
    Mori, Yoshio
    Kamitani, Wataru
    Matsuura, Yoshiharu
    JOURNAL OF VIROLOGY, 2013, 87 (01) : 489 - 502
  • [26] In silico Analyses of Subtype Specific HIV-1 Tat-TAR RNA Interaction Reveals the Structural Determinants for Viral Activity
    Ronsard, Larance
    Rai, Tripti
    Rai, Devesh
    Ramachandran, Vishnampettai G.
    Banerjea, Akhil C.
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [27] Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection
    Purohit, P
    Dupont, S
    Stevenson, M
    Green, MR
    RNA, 2001, 7 (04) : 576 - 584
  • [28] HCV 5-Methylcytosine Enhances Viral RNA Replication through Interaction with m5C Reader YBX1
    Li, Zhu-Li
    Xie, Yan
    Xie, Yuke
    Chen, Hongliang
    Zhou, Xiang
    Liu, Min
    Zhang, Xiao-Lian
    ACS CHEMICAL BIOLOGY, 2024, 19 (07) : 1648 - 1660
  • [29] Carrimycin inhibits coronavirus replication by decreasing the efficiency of programmed-1 ribosomal frameshifting through directly binding to the RNA pseudoknot of viral frameshift-stimulatory element
    Li, Hongying
    Li, Jianrui
    Li, Jiayu
    Li, Hu
    Wang, Xuekai
    Jiang, Jing
    Lei, Lei
    Sun, Han
    Tang, Mei
    Dong, Biao
    He, Weiqing
    Si, Shuyi
    Hong, Bin
    Li, Yinghong
    Song, Danqing
    Peng, Zonggen
    Che, Yongsheng
    Jiang, Jian-Dong
    ACTA PHARMACEUTICA SINICA B, 2024, 14 (06) : 2567 - 2580
  • [30] VIRAL-DNA SYNTHESIS IS REQUIRED FOR THE EFFICIENT EXPRESSION OF SPECIFIC HERPES-SIMPLEX VIRUS TYPE-1 MESSENGER-RNA SPECIES
    HOLLAND, LE
    ANDERSON, KP
    SHIPMAN, C
    WAGNER, EK
    VIROLOGY, 1980, 101 (01) : 10 - 24