Towards for Using Spectral Clustering in Graph Mining

被引:2
|
作者
Ait El Mouden, Z. [1 ]
Moulay Taj, R. [2 ]
Jakimi, A. [1 ]
Hajar, M. [2 ]
机构
[1] UMI, FSTE, Software Engn & Informat Syst Engn Team, Errachidia, Morocco
[2] UMI, FSTE, Operat Res & Comp Sci Team, Errachidia, Morocco
关键词
Community detection; Spectral clustering; Laplacian matrices; Similarity graphs;
D O I
10.1007/978-3-319-96292-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an approach of community detection from data modeled by graphs, using the Spectral Clustering (SC) algorithms, and based on a matrix representation of the graphs. We will focus on the use of Laplacian matrices afterwards. The spectral analysis of those matrices can give us interesting details about the processed graph. The input of the process is a set of data and the output will be a set of communities or clusters that regroup the input data, by starting with the graphical modeling of the data and going through the matrix representation of the similarity graph, then the spectral analysis of the Laplacian matrices, the process will finish with the results interpretation.
引用
收藏
页码:144 / 159
页数:16
相关论文
共 50 条
  • [31] Topic Mining Based on Graph Local Clustering
    Garza Villarreal, Sara Elena
    Brena, Ramon F.
    ADVANCES IN SOFT COMPUTING, PT II, 2011, 7095 : 201 - +
  • [32] Graph Convolutional Spectral Clustering for Electricity Market Data Clustering
    Huang, Longda
    Shan, Maohua
    Weng, Liguo
    Meng, Lingyi
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [33] REVISITING FAST SPECTRAL CLUSTERING WITH ANCHOR GRAPH
    Wang, Cheng-Long
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3902 - 3906
  • [34] Explainable Graph Spectral Clustering of text documents
    Starosta, Bartlomiej
    Klopotek, Mieczyslaw A.
    Wierzchon, Slawomir T.
    Czerski, Dariusz
    Sydow, Marcin
    Borkowski, Piotr
    PLOS ONE, 2025, 20 (02):
  • [35] Reeb graph computation through spectral clustering
    Ma, Teng
    Wu, Zhuangzhi
    Luo, Pei
    Feng, Lu
    OPTICAL ENGINEERING, 2012, 51 (01)
  • [36] Phylogeny Inference Based on Spectral Graph Clustering
    Zhang, Shu-Bo
    Zhou, Song-Yu
    He, Jian-Guo
    Lai, Jian-Huang
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (04) : 627 - 637
  • [37] Spectral embedding network for attributed graph clustering
    Zhang, Xiaotong
    Liu, Han
    Wu, Xiao-Ming
    Zhang, Xianchao
    Liu, Xinyue
    NEURAL NETWORKS, 2021, 142 : 388 - 396
  • [38] Survey of spectral clustering based on graph theory
    Ding, Ling
    Li, Chao
    Jin, Di
    Ding, Shifei
    PATTERN RECOGNITION, 2024, 151
  • [39] Tensorized Graph Learning for Spectral Ensemble Clustering
    Cao, Zhe
    Lu, Yihang
    Yuan, Jinghui
    Xin, Haonan
    Wang, Rong
    Nie, Feiping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2662 - 2674
  • [40] Clustering graph data: the roadmap to spectral techniques
    Mondal R.
    Ignatova E.
    Walke D.
    Broneske D.
    Saake G.
    Heyer R.
    Discover Artificial Intelligence, 2024, 4 (01):