Towards for Using Spectral Clustering in Graph Mining

被引:2
|
作者
Ait El Mouden, Z. [1 ]
Moulay Taj, R. [2 ]
Jakimi, A. [1 ]
Hajar, M. [2 ]
机构
[1] UMI, FSTE, Software Engn & Informat Syst Engn Team, Errachidia, Morocco
[2] UMI, FSTE, Operat Res & Comp Sci Team, Errachidia, Morocco
关键词
Community detection; Spectral clustering; Laplacian matrices; Similarity graphs;
D O I
10.1007/978-3-319-96292-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an approach of community detection from data modeled by graphs, using the Spectral Clustering (SC) algorithms, and based on a matrix representation of the graphs. We will focus on the use of Laplacian matrices afterwards. The spectral analysis of those matrices can give us interesting details about the processed graph. The input of the process is a set of data and the output will be a set of communities or clusters that regroup the input data, by starting with the graphical modeling of the data and going through the matrix representation of the similarity graph, then the spectral analysis of the Laplacian matrices, the process will finish with the results interpretation.
引用
收藏
页码:144 / 159
页数:16
相关论文
共 50 条
  • [1] Graph matching and clustering using spectral partitions
    Qiu, HJ
    Hancock, ER
    PATTERN RECOGNITION, 2006, 39 (01) : 22 - 34
  • [2] Towards attributed graph clustering using enhanced graph and reconstructed graph structure
    Yang, Xuejin
    Xie, Cong
    Zhou, Kemin
    Song, Shaoyun
    Yang, Junsheng
    Li, Bin
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (11)
  • [3] Towards Explaining the Spectrogram of Graph Spectral Clustering in Text Document Domain
    Klopotek, Mieczyslaw A.
    Wierzchon, Slawomir T.
    Starosta, Bartlomiej
    Czerski, Dariusz
    Borkowski, Piotr
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2024, 2024, 14902 : 372 - 386
  • [4] Spectral Clustering Using Compactly Supported Graph Building
    Alvarez-Meza, A. M.
    Castro-Ospina, A. E.
    Castellanos-Dominguez, German
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 327 - 334
  • [5] Graph spectral decomposition and clustering
    Kong, Min
    Tang, Jin
    Luo, Bin
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 690 - 690
  • [6] Graph spectral decomposition and clustering
    School of Computer Science and Technology, Anhui University, Hefei 230039, China
    不详
    Moshi Shibie yu Rengong Zhineng, 2006, 5 (674-679):
  • [7] Twitter Association Rule Mining using Clustering and Graph Databases
    Campi, Alessandro
    Palese, Corrado
    5TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND DATA MINING (ICISDM 2021), 2021, : 90 - 95
  • [8] Online Structural Graph Clustering Using Frequent Subgraph Mining
    Seeland, Madeleine
    Girschick, Tobias
    Buchwald, Fabian
    Kramer, Stefan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2010, 6323 : 213 - 228
  • [9] Spatial-Spectral Graph Contrastive Clustering With Hard Sample Mining for Hyperspectral Images
    Guan, Renxiang
    Tu, Wenxuan
    Li, Zihao
    Yu, Hao
    Hu, Dayu
    Chen, Yuzeng
    Tang, Chang
    Yuan, Qiangqiang
    Liu, Xinwang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [10] ACCELERATED SPECTRAL CLUSTERING USING GRAPH FILTERING OF RANDOM SIGNALS
    Tremblay, Nicolas
    Puy, Gilles
    Borgnat, Pierre
    Gribonval, Remi
    Vandergheynst, Pierre
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4094 - 4098