Problem of filling of a spherical cavity in a Kelvin-Voigt medium

被引:1
|
作者
Osipov, S. V. [1 ]
机构
[1] Tyumen Petr Res Ctr, Tyumen 625000, Russia
关键词
Kelvin-Voigt medium; viscoelastic medium; cavity filling; finite strains;
D O I
10.1007/s10808-008-0098-z
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper is concerned with mathematical modeling and solution of the problem of the collapse of a spherical cavity in a viscoelastic medium under the action of constant pressure at infinity. A differential equation of motion for the cavity boundary is constructed and solved numerically. The existence of three modes of motion of the boundary is established, and a map of these modes in the plane of the determining parameters is constructed. Asymptotic forms of the solutions of the problem for all modes are constructed. The problem of cavity collapse with capillary forces taken into account is formulated and solved.
引用
收藏
页码:781 / 788
页数:8
相关论文
共 50 条
  • [21] GLOBAL SOLVABILITY OF INVERSE PROBLEM FOR LINEAR KELVIN-VOIGT EQUATIONS WITH MEMORY
    Aidos, Shakir
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 118 (02): : 30 - 41
  • [22] A Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt Damping
    Raposo, C. A.
    Bastos, W. D.
    Avila, J. A. J.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2011, 5 (01): : 17 - 28
  • [23] BRESSE SYSTEMS WITH LOCALIZED KELVIN-VOIGT DISSIPATION
    Contreras, Gabriel Aguilera
    Munoz-Rivera, Jaime E.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [24] A note on a reappraisal and generalization of the Kelvin-Voigt model
    Rajagopal, K. R.
    MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (02) : 232 - 235
  • [25] Uniform Attractors for the Modified Kelvin-Voigt Model
    Ustiuzhaninova, A. S.
    DIFFERENTIAL EQUATIONS, 2021, 57 (09) : 1165 - 1176
  • [26] SIGNORINI'S PROBLEM FOR THE BRESSE BEAM MODEL WITH LOCALIZED KELVIN-VOIGT DISSIPATION
    Rivera, Jaime E. Munoz
    Baldez, Carlos A. Da Costa
    Cordeiro, Sebastiaeo M. S.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (17) : 1 - 24
  • [27] Thermoviscoelasticity in Kelvin-Voigt Rheology at Large Strains
    Mielke, Alexander
    Roubicek, Tomas
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 238 (01) : 1 - 45
  • [28] On the Stabilization of the Bresse Beam with Kelvin-Voigt Damping
    El Arwadi, Toufic
    Youssef, Wael
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1831 - 1857
  • [29] HYDRODYNAMIC KELVIN-VOIGT MODEL TRANSPORTATION SYSTEM
    Pihnastyi, Oleh M.
    Khodusov, Valery D.
    EAST EUROPEAN JOURNAL OF PHYSICS, 2020, (04): : 95 - 109
  • [30] Study of Kelvin-Voigt Models Arising in Viscoelasticity
    Davydov, A. V.
    Tikhonov, Yu. A.
    DIFFERENTIAL EQUATIONS, 2018, 54 (12) : 1620 - 1635