Organ Segmentation in Poultry Viscera Using RGB-D

被引:10
|
作者
Philipsen, Mark Philip [1 ]
Dueholm, Jacob Velling [1 ]
Jorgensen, Anders [1 ,2 ]
Escalera, Sergio [1 ,3 ,4 ]
Moeslund, Thomas Baltzer [1 ]
机构
[1] Aalborg Univ, Media Technol, DK-9000 Aalborg, Denmark
[2] IHFood, Carsten Niebuhrs Gade 10,2 Tv, DK-1577 Copenhagen, Denmark
[3] Univ Barcelona, Math & Informat, E-08007 Barcelona, Spain
[4] Comp Vis Ctr, Barcelona 08193, Spain
关键词
semantic segmentation; RGB-D; random forest; conditional random field; 2D; 3D; CNN; IMAGING-SYSTEM; COLOR; INSPECTION; QUALITY; LIVERS;
D O I
10.3390/s18010117
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Object Segmentation of Indoor Scenes Using Perceptual Organization on RGB-D Images
    Wang, Chaonan
    Xue, Yanbing
    Zhang, Hua
    Xu, Guangping
    Gao, Zan
    [J]. 2016 8TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP), 2016,
  • [32] 3D Instance Segmentation Using Deep Learning on RGB-D Indoor Data
    Yasir, Siddiqui Muhammad
    Sadiq, Amin Muhammad
    Ahn, Hyunsik
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5777 - 5791
  • [33] Hierarchical Image Segmentation Ensemble for Objectness in RGB-D Images
    Wang, Huiqun
    Huang, Di
    Jia, Kui
    Wang, Yunhong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (01) : 93 - 103
  • [34] Regularized Fully Convolutional Networks for RGB-D Semantic Segmentation
    Su, Wen
    Wang, Zengfu
    [J]. 2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [35] Enhance Support Relation Extraction Accuracy Using Improvement Of Segmentation In RGB-D Images
    Ahmadi, Shokouh S.
    Khotanlou, Hassan
    [J]. 2017 3RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (IPRIA), 2017, : 166 - 169
  • [36] Joint Object Affordance Reasoning and Segmentation in RGB-D Videos
    Thermos, Spyridon
    Potamianos, Gerasimos
    Daras, Petros
    [J]. IEEE ACCESS, 2021, 9 : 89699 - 89713
  • [37] Automatic Network Architecture Search for RGB-D Semantic Segmentation
    Wang, Wenna
    Zhuo, Tao
    Zhang, Xiuwei
    Sun, Mingjun
    Yin, Hanlin
    Xing, Yinghui
    Zhang, Yanning
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3777 - 3786
  • [38] Learning of perceptual grouping for object segmentation on RGB-D data
    Richtsfeld, Andreas
    Moerwald, Thomas
    Prankl, Johann
    Zillich, Michael
    Vincze, Markus
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (01) : 64 - 73
  • [39] Tomato segmentation and localization method based on RGB-D camera
    Malik, Muhammad Hammad
    Qiu, Ruicheng
    Gao, Yang
    Zhang, Man
    Li, Han
    Li, Minzan
    [J]. International Agricultural Engineering Journal, 2019, 28 (04): : 278 - 287
  • [40] Superpixel Segmentation Based Gradient Maps on RGB-D Dataset
    Jiang, Lixing
    Lu, Huimin
    Vo Duc My
    Koch, Artur
    Zell, Andreas
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 1359 - 1364