Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate

被引:171
|
作者
Plechinger, Gerd [1 ]
Castellanos-Gomez, Andres [2 ]
Buscema, Michele [2 ]
van der Zant, Herre S. J. [2 ]
Steele, Gary A. [2 ]
Kuc, Agnieszka [3 ]
Heine, Thomas [3 ]
Schueller, Christian [1 ]
Korn, Tobias [1 ]
机构
[1] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[3] Jacobs Univ Bremen, Sch Sci & Engn, D-28759 Bremen, Germany
来源
2D MATERIALS | 2015年 / 2卷 / 01期
关键词
single-layer molybdenum disulfide; atomically thin crystal; strain engineering; bandstructure; biaxial strain; ELECTRONIC-PROPERTIES; ELASTIC PROPERTIES; MONOLAYER MOS2; PHOTOLUMINESCENCE; ENERGY;
D O I
10.1088/2053-1583/2/1/015006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Correlation between structure, phonon spectra, thermal expansion, and thermomechanics of single-layer MoS2
    Huang, Liang Feng
    Gong, Peng Lai
    Zeng, Zhi
    PHYSICAL REVIEW B, 2014, 90 (04)
  • [32] Evidence for Strain-Induced Local Conductance Modulations in Single-Layer Graphene on SiO2
    Teague, M. L.
    Lai, A. P.
    Velasco, J.
    Hughes, C. R.
    Beyer, A. D.
    Bockrath, M. W.
    Lau, C. N.
    Yeh, N. -C.
    NANO LETTERS, 2009, 9 (07) : 2542 - 2546
  • [33] Superior lattice thermal conductance of single-layer borophene
    Hangbo Zhou
    Yongqing Cai
    Gang Zhang
    Yong-Wei Zhang
    npj 2D Materials and Applications, 1
  • [34] Superior lattice thermal conductance of single-layer borophene
    Zhou, Hangbo
    Cai, Yongqing
    Zhang, Gang
    Zhang, Yong-Wei
    NPJ 2D MATERIALS AND APPLICATIONS, 2017, 1
  • [35] STRAIN, FRACTURES, AND PRESSURE SOLUTION IN NATURAL SINGLE-LAYER FOLDS
    GROSHONG, RH
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 1975, 86 (10) : 1363 - 1376
  • [36] Multi layer substrate with low coefficent of thermal expansion
    Nakamura, K
    Kaneto, M
    Inoue, Y
    Okeyui, T
    Miyake, K
    Oota, S
    2000 INTERNATIONAL SYMPOSIUM ON MICROELECTRONICS, 2000, 4339 : 235 - 240
  • [37] A strain tunable single-layer MoS2 photodetector
    Gant, Patricia
    Huang, Peng
    de Lara, David Perez
    Guo, Dan
    Frisenda, Riccardo
    Castellanos-Gomez, Andres
    MATERIALS TODAY, 2019, 27 : 8 - 13
  • [38] THE EFFECTS OF RHEOLOGY ON THE STRAIN DISTRIBUTION IN SINGLE-LAYER BUCKLE FOLDS
    LAN, LB
    HUDLESTON, PJ
    JOURNAL OF STRUCTURAL GEOLOGY, 1995, 17 (05) : 727 - 738
  • [39] A novel, single-layer model for composite plates using local-global approach
    Han, Shilei
    Bauchau, Olivier A.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2016, 60 : 1 - 16
  • [40] A wideband single-layer crossover using substrate integrated waveguide to grounded coplanar waveguide transition
    Bagheri, Alireza
    Moradi, Gholamreza
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2017, 59 (11) : 2757 - 2762