Near Real-time Service Monitoring Using High-dimensional Time Series
被引:3
|
作者:
Khanduja, Shwetabh
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Res, Bangalore, Karnataka, IndiaMicrosoft Res, Bangalore, Karnataka, India
Khanduja, Shwetabh
[1
]
Nair, Vinod
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Res, Bangalore, Karnataka, IndiaMicrosoft Res, Bangalore, Karnataka, India
Nair, Vinod
[1
]
Sundararajan, S.
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Res, Bangalore, Karnataka, IndiaMicrosoft Res, Bangalore, Karnataka, India
Sundararajan, S.
[1
]
Raul, Ameya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Madison, WI USAMicrosoft Res, Bangalore, Karnataka, India
Raul, Ameya
[2
]
Shaj, Ajesh Babu
论文数: 0引用数: 0
h-index: 0
机构:
Google, Mountain View, CA USAMicrosoft Res, Bangalore, Karnataka, India
Shaj, Ajesh Babu
[3
]
Keerthi, Sathiya
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft, Mountain View, CA USAMicrosoft Res, Bangalore, Karnataka, India
Keerthi, Sathiya
[4
]
机构:
[1] Microsoft Res, Bangalore, Karnataka, India
[2] Univ Wisconsin, Madison, WI USA
[3] Google, Mountain View, CA USA
[4] Microsoft, Mountain View, CA USA
来源:
2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW)
|
2015年
关键词:
D O I:
10.1109/ICDMW.2015.254
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
We demonstrate a near real-time service monitoring system for detecting and diagnosing issues from high-dimensional time series data. For detection, we have implemented a learning algorithm that constructs a hierarchy of detectors from data. It is scalable, does not require labelled examples of issues for learning, runs in near real-time, and identifies a subset of counter time series as being relevant for a detected issue. For diagnosis, we provide efficient algorithms as post-detection diagnosis aids to find further relevant counter time series at issue times, a SQL-like query language for writing flexible queries that apply these algorithms on the time series data, and a graphical user interface for visualizing the detection and diagnosis results. Our solution has been deployed in production as an end-to-end system for monitoring Microsoft's internal distributed data storage and computing platform consisting of tens of thousands of machines and currently analyses about 12000 counter time series.
机构:
South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
Xia, Qiang
Liang, Rubing
论文数: 0引用数: 0
h-index: 0
机构:
South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
Liang, Rubing
Wu, Jianhong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Sch Math & Sci, Shanghai 200234, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
Wu, Jianhong
Wong, Heung
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R ChinaSouth China Agr Univ, Coll Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
机构:
Univ Sci & Technol China, Int Inst Finance, Sch Management, Dept Stat & Finance, Hefei, Peoples R ChinaUniv Sci & Technol China, Int Inst Finance, Sch Management, Dept Stat & Finance, Hefei, Peoples R China
Zhang, Bo
Pan, Guangming
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, SingaporeUniv Sci & Technol China, Int Inst Finance, Sch Management, Dept Stat & Finance, Hefei, Peoples R China
Pan, Guangming
Yao, Qiwei
论文数: 0引用数: 0
h-index: 0
机构:
London Sch Econ & Polit Sci, Dept Stat, London, EnglandUniv Sci & Technol China, Int Inst Finance, Sch Management, Dept Stat & Finance, Hefei, Peoples R China
Yao, Qiwei
Zhou, Wang
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Dept Stat & Data Sci, Singapore, SingaporeUniv Sci & Technol China, Int Inst Finance, Sch Management, Dept Stat & Finance, Hefei, Peoples R China
机构:
San Diego State Univ, Management Informat Syst Dept, San Diego, CA 92182 USASan Diego State Univ, Management Informat Syst Dept, San Diego, CA 92182 USA
Liu, Xialu
Chen, Rong
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USASan Diego State Univ, Management Informat Syst Dept, San Diego, CA 92182 USA
机构:
Southwestern Univ Finance & Econ, Joint Lab Data Sci & Business Intelligence, Chengdu 611130, Sichuan, Peoples R ChinaSouthwestern Univ Finance & Econ, Joint Lab Data Sci & Business Intelligence, Chengdu 611130, Sichuan, Peoples R China
Yang, Lin
Feng, Zhenghui
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Sci, Shenzhen 518055, Guangdong, Peoples R ChinaSouthwestern Univ Finance & Econ, Joint Lab Data Sci & Business Intelligence, Chengdu 611130, Sichuan, Peoples R China
Feng, Zhenghui
Jiang, Qing
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ Zhuhai, Ctr Stat & Data Sci, Zhuhai 519087, Guangdong, Peoples R ChinaSouthwestern Univ Finance & Econ, Joint Lab Data Sci & Business Intelligence, Chengdu 611130, Sichuan, Peoples R China
机构:
Univ Sydney, Business Sch, Sydney, AustraliaSouthwestern Univ Finance & Econ, Joint Lab Data Sci & Business Intelligence, Chengdu, Sichuan, Peoples R China
Fang, Qin
Qiao, Xinghao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Fac Business & Econ, Pokfulam, Hong Kong, Peoples R ChinaSouthwestern Univ Finance & Econ, Joint Lab Data Sci & Business Intelligence, Chengdu, Sichuan, Peoples R China
Qiao, Xinghao
Yao, Qiwei
论文数: 0引用数: 0
h-index: 0
机构:
London Sch Econ, Dept Stat, London, EnglandSouthwestern Univ Finance & Econ, Joint Lab Data Sci & Business Intelligence, Chengdu, Sichuan, Peoples R China