Adaptive feature selection framework for DNA methylation-based age prediction

被引:1
|
作者
Momeni, Zahra [1 ]
Abadeh, Mohammad Saniee [1 ]
机构
[1] Tarbiat Modares Univ, Fac Elect & Comp Engn, Tehran, Iran
关键词
Age prediction; Genetic algorithm; CpG-site selection; Adaptive feature selection; GENE SELECTION; BLOOD; ELITISM; MARKERS; SET;
D O I
10.1007/s00500-022-06844-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aging process is one of the main unsolved problems of modern biology that affects almost all living species, resulting from multiple interactions of genetics and environmental factors. Numerous studies have shown that DNA methylation changes are one of the most sustainable biomarkers in predicting biological age that has complex relationship with chronological age. This point shows the importance of selecting age-related CpG-sites. Most feature selection methods that have been proposed in this field are problem-dependent techniques for finding important age-related CpG-sites. However, in this study, we propose a general-purpose framework that is problem independent. This adaptive framework is proposed to find the best sequence of feature selection methods and the number of features that selected in each step according to the used dataset. To evaluate our proposed framework, we used two groups of DNA methylation dataset related to blood tissue and non-blood tissues from healthy samples. The results of our adaptive framework have been compared with four studies in terms of mean absolute deviation (MAD) and correlation (R-2) separately on blood and non-blood datasets. Our framework achieved MAD of 3.9 years and 5.33 years on the blood and non-blood test datasets, respectively. Also, a correlation (R-2) of 95.24% and 91.92% between chronological age and DNAm has been reported on the blood and non-blood test datasets, respectively. The experimental results show that our proposed framework was able to adaptively find the best feature selection method appropriate to the data that has an acceptable performance compared to other studies.
引用
收藏
页码:3777 / 3788
页数:12
相关论文
共 50 条
  • [41] DNA Methylation-Based as a Prediction of Therapeutic Outcome in Serum of Patients with Breast Cancer
    Martinez-Galan, J.
    Delgado, J. R.
    Torres-Torres, B.
    Lopez-Penalver, J.
    Del Moral, R.
    Ruiz de Almodovar, M.
    EUROPEAN JOURNAL OF CANCER, 2012, 48 : 138 - 138
  • [42] DNA Methylation-Based Subtype Prediction for Pediatric Acute Lymphoblastic Leukemia (ALL)
    Nordlund, Jessica
    Backlin, Christofer
    Zachariadis, Vasilios
    Cavelier, Lucia
    Dahlberg, Johan
    Ofverholm, Ingegerd
    Barbany, Gisela
    Nordgren, Ann
    Overnas, Elin
    Abrahamsson, Jonas
    Flaegstad, Trond
    Heyman, Mats
    Jonsson, Olafur G.
    Kanerva, Jukka A.
    Larsson, Rolf
    Palle, Josefine
    Schmiegelow, Kjeld
    Gustafsson, Mats G.
    Lonnerholm, Gudmar
    Forestier, Erik
    Syvanen, Ann-Christine
    BLOOD, 2014, 124 (21)
  • [43] DNA methylation-based prediction of response to immune checkpoint inhibition in metastatic melanoma
    Filipski, Katharina
    Scherer, Michael
    Zeiner, Kim N.
    Bucher, Andreas
    Kleemann, Johannes
    Jurmeister, Philipp
    Hartung, Tabea, I
    Meissner, Markus
    Plate, Karl H.
    Fenton, Tim R.
    Walter, Jorn
    Tierling, Sascha
    Schilling, Bastian
    Zeiner, Pia S.
    Harter, Patrick N.
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 (07)
  • [44] DNA methylation-based biomarkers in bladder cancer
    Raju Kandimalla
    Angela A. van Tilborg
    Ellen C. Zwarthoff
    Nature Reviews Urology, 2013, 10 : 327 - 335
  • [45] DNA methylation-based biomarkers in urological cancers
    Xu, Rong
    Lin, Shaokun
    Xin, Jun
    Guo, Youhong
    Zhang, Wenzhou
    Lin, Yangjun
    Xu, Rui'an
    Information Technology Journal, 2013, 12 (17) : 4289 - 4297
  • [46] DNA methylation-based age estimation and quantification of the degradation levels of bisulfite-converted DNA
    Shiga, Mihiro
    Asari, Masaru
    Takahashi, Yuta
    Isozaki, Shotaro
    Hoshina, Chisato
    Mori, Kanae
    Namba, Ryo
    Okuda, Katsuhiro
    Shimizu, Keiko
    LEGAL MEDICINE, 2024, 67
  • [47] Developing DNA methylation-based diagnostic biomarkers
    Hyerim Kim
    Xudong Wang
    Peng Jin
    JournalofGeneticsandGenomics, 2018, 45 (02) : 87 - 97
  • [48] DNA methylation-based biomarkers in bladder cancer
    Kandimalla, Raju
    van Tilborg, Angela A.
    Zwarthoff, Ellen C.
    NATURE REVIEWS UROLOGY, 2013, 10 (06) : 327 - 335
  • [49] DNA methylation-based reclassification of olfactory neuroblastoma
    David Capper
    Nils W. Engel
    Damian Stichel
    Matt Lechner
    Stefanie Glöss
    Simone Schmid
    Christian Koelsche
    Daniel Schrimpf
    Judith Niesen
    Annika K. Wefers
    David T. W. Jones
    Martin Sill
    Oliver Weigert
    Keith L. Ligon
    Adriana Olar
    Arend Koch
    Martin Forster
    Sebastian Moran
    Oscar M. Tirado
    Miguel Sáinz-Jaspeado
    Jaume Mora
    Manel Esteller
    Javier Alonso
    Xavier Garcia del Muro
    Werner Paulus
    Jörg Felsberg
    Guido Reifenberger
    Markus Glatzel
    Stephan Frank
    Camelia M. Monoranu
    Valerie J. Lund
    Andreas von Deimling
    Stefan Pfister
    Rolf Buslei
    Julika Ribbat-Idel
    Sven Perner
    Volker Gudziol
    Matthias Meinhardt
    Ulrich Schüller
    Acta Neuropathologica, 2018, 136 : 255 - 271
  • [50] DNA methylation-based estimator of telomere length
    Lu, Ake T.
    Seeboth, Anne
    Tsai, Pei-Chien
    Sun, Dianjianyi
    Quach, Austin
    Reiner, Alex P.
    Kooperberg, Charles
    Ferrucci, Luigi
    Hou, Lifang
    Baccarelli, Andrea A.
    Li, Yun
    Harris, Sarah E.
    Corley, Janie
    Taylor, Adele
    Deary, Ian J.
    Stewart, James D.
    Whitsel, Eric A.
    Assimes, Themistocles L.
    Chen, Wei
    Li, Shengxu
    Mangino, Massimo
    Bell, Jordana T.
    Wilson, James G.
    Aviv, Abraham
    Marioni, Riccardo E.
    Raj, Kenneth
    Horvath, Steve
    AGING-US, 2019, 11 (16): : 5895 - 5923