A fully automatic and robust brain MRI tissue classification method (vol 7, pg 513, 2003)

被引:2
|
作者
Cocosco, CA [1 ]
Zijdenbos, AP [1 ]
Evans, AC [1 ]
机构
[1] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ H3A 2B4, Canada
关键词
D O I
10.1016/j.media.2003.10.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:93 / 94
页数:2
相关论文
共 41 条
  • [11] Deep learning from MRI-derived labels enables automatic brain tissue classification on human brain CT
    Srikrishna, Meera
    Pereira, Joana B.
    Heckemann, Rolf A.
    Volpe, Giovanni
    van Westen, Danielle
    Zettergren, Anna
    Kern, Silke
    Wahlund, Lars-Olof
    Westman, Eric
    Skoog, Ingmar
    Scholl, Michael
    NEUROIMAGE, 2021, 244
  • [13] Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks
    Arunkumar, N.
    Mohammed, Mazin Abed
    Mostafa, Salama A.
    Ibrahim, Dheyaa Ahmed
    Rodrigues, Joel J. P. C.
    de Albuquerque, Victor Hugo C.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (01):
  • [14] Automatic brain tissue segmentation method from MRI T1-weighted data
    Miura, Naoki
    Takahashi, Makoto
    Kawashima, Ryuta
    Kitamura, Masaharu
    FUTURE MEDICAL ENGINEERING BASED ON BIONANOTECHNOLOGY, PROCEEDINGS, 2006, : 1065 - +
  • [15] Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure (vol 107, pg 5130, 2010)
    Lee, Jongho
    Shmueli, Karin
    Fukunaga, Masaki
    van Gelderen, Peter
    Merkle, Hellmut
    Silva, Afonso C.
    Duyn, Jeff H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (18) : 8498 - 8498
  • [16] Classification and pharmacology of progestins (Reprinted from Maturitas, vol 46, pg S7-S16, 2003)
    Schindler, Adolf E.
    Campagnoli, Carlo
    Druckmann, Rene
    Huber, Johannes
    Pasqualini, Jorge R.
    Schweppe, Karl W.
    Thijssen, Jos H. H.
    MATURITAS, 2008, 61 (1-2) : 171 - 180
  • [17] An efficient method for MRI brain tumor tissue segmentation and classification using an optimized support vector machine
    Kollem, Sreedhar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (26) : 68487 - 68519
  • [18] Deep Learning-Based Robust Automatic Modulation Classification for Cognitive Radio Networks (vol 9, pg 92386, 2021)
    Kim, Seung-Hwan
    Kim, Jae-Woo
    Nwadiugwu, Williams-Paul
    Kim, Dong-Seong
    IEEE ACCESS, 2021, 9 : 109094 - 109094
  • [19] RETRACTED: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas (Retracted article. See vol. 25, pg. 1197, 2023)
    Yogananda, Chandan Ganesh Bangalore
    Shah, Bhavya R.
    Vejdani-Jahromi, Maryam
    Nalawade, Sahil S.
    Murugesan, Gowtham K.
    Yu, Frank F.
    Pinho, Marco C.
    Wagner, Benjamin C.
    Mickey, Bruce
    Patel, Toral R.
    Fei, Baowei
    Madhuranthakam, Ananth J.
    Maldjian, Joseph A.
    NEURO-ONCOLOGY, 2020, 22 (03) : 402 - 411
  • [20] Functional MRI with active, fully implanted, deep brain stimulation systems: Safety and experimental confounds (vol 37, pg 508, 2007)
    Carmichael, David W.
    Pinto, Serge
    Limousin-Dowsey, Patricia
    Thobois, Stephane
    Allen, Philip J.
    Lemieux, Louis
    Hariz, Marwan I.
    Yousry, Tarek
    Thornton, John S.
    NEUROIMAGE, 2008, 40 (02) : 987 - 987