Stabilizer formalism for operator quantum error correction

被引:209
|
作者
Poulin, D [1 ]
机构
[1] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
关键词
D O I
10.1103/PhysRevLett.95.230504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Operator quantum error correction is a recently developed theory that provides a generalized and unified framework for active error correction and passive error avoiding schemes. In this Letter, we describe these codes using the stabilizer formalism. This is achieved by adding a gauge group to stabilizer codes that defines an equivalence class between encoded states. Gauge transformations leave the encoded information unchanged; their effect is absorbed by virtual gauge qubits that do not carry useful information. We illustrate the construction by identifying a gauge symmetry in Shor's 9-qubit code that allows us to remove 3 of its 8 stabilizer generators, leading to a simpler decoding procedure and a wider class of logical operations without affecting its essential properties. This opens the path to possible improvements of the error threshold of fault-tolerant quantum computing.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Quantum computing and error correction
    Steane, AM
    [J]. DECOHERENCE AND ITS IMPLICATIONS IN QUANTUM COMPUTATION AND INFORMATION TRANSFER, 2001, 182 : 284 - 298
  • [42] Analog quantum error correction
    Lloyd, S
    Slotine, JJE
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (18) : 4088 - 4091
  • [43] A Survey of Quantum Error Correction
    Matsumoto, Ryutaroh
    Hagiwara, Manabu
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2021, E104A (12) : 1654 - 1664
  • [44] Tracking quantum error correction
    Fukui, Kosuke
    Tomita, Akihisa
    Okamoto, Atsushi
    [J]. PHYSICAL REVIEW A, 2018, 98 (02)
  • [45] Quantum error correction for communication
    Ekert, A
    Macchiavello, C
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (12) : 2585 - 2588
  • [46] Quantum Error Correction at the Threshold
    不详
    [J]. IEEE SPECTRUM, 2022, 59 (07) : 28 - 34
  • [47] Continuous quantum error correction
    Sarovar, M
    Milburn, GJ
    [J]. QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 121 - 126
  • [48] Quantum memories and error correction
    Wootton, James R.
    [J]. JOURNAL OF MODERN OPTICS, 2012, 59 (20) : 1717 - 1738
  • [49] Decoherence and quantum error correction
    Knight, PL
    Plenio, MB
    Vedral, V
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2381 - 2385
  • [50] On the Probabilistic Quantum Error Correction
    Kukulski, Ryszard
    Pawela, Lukasz
    Puchala, Zbigniew
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4620 - 4640