MACHINE LEARNING-BASED PREDICTION OF CLINICAL OUTCOMES FOR CHILDREN USING LINKED ELECTRONIC HEALTH RECORDS IN MANHICA DISTRICT, MOZAMBIQUE

被引:0
|
作者
Lal, Sham [1 ]
Valente, Marta [2 ]
Baerenbold, Oliver [1 ]
Bramugy, Justina [3 ]
Ajanovic, Sara [2 ]
Matsena, Teodimiro [3 ]
Roberts, Chrissy H. [1 ]
Bassat, Quique [2 ]
机构
[1] London Sch Hyg & Trop Med, London, England
[2] Univ Barcelona, Hosp Clin, ISGlobal, Barcelona, Spain
[3] Ctr Invest Saude Manh CISM, Maputo, Mozambique
来源
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
0500
引用
收藏
页码:161 / 161
页数:1
相关论文
共 50 条
  • [41] Machine learning-based prediction of clinical outcomes after first-ever ischemic stroke
    Fast, Lea
    Temuulen, Uchralt
    Villringer, Kersten
    Kufner, Anna
    Ali, Huma Fatima
    Siebert, Eberhard
    Huo, Shufan
    Piper, Sophie K. K.
    Sperber, Pia Sophie
    Liman, Thomas
    Endres, Matthias
    Ritter, Kerstin
    [J]. FRONTIERS IN NEUROLOGY, 2023, 14
  • [42] Development and validation of a pancreatic cancer prediction model from electronic health records using machine learning
    Appelbaum, Limor
    Cambronero, Jose Pablo
    Pollick, Karla
    Silva, George
    Stevens, Jennifer P.
    Mamon, Harvey J.
    Kaplan, Irving D.
    Rinard, Martin
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (04)
  • [43] Machine learning-based clinical outcome prediction in surgery for acromegaly
    Zanier, Olivier
    Zoli, Matteo
    Staartjes, Victor E.
    Guaraldi, Federica
    Asioli, Sofia
    Rustici, Arianna
    Picciola, Valentino Marino
    Pasquini, Ernesto
    Faustini-Fustini, Marco
    Erlic, Zoran
    Regli, Luca
    Mazzatenta, Diego
    Serra, Carlo
    [J]. ENDOCRINE, 2022, 75 (02) : 508 - 515
  • [44] Machine learning-based clinical outcome prediction in surgery for acromegaly
    Olivier Zanier
    Matteo Zoli
    Victor E. Staartjes
    Federica Guaraldi
    Sofia Asioli
    Arianna Rustici
    Valentino Marino Picciola
    Ernesto Pasquini
    Marco Faustini-Fustini
    Zoran Erlic
    Luca Regli
    Diego Mazzatenta
    Carlo Serra
    [J]. Endocrine, 2022, 75 : 508 - 515
  • [45] Supervised machine learning-based prediction for in-hospital pressure injury development using electronic health records: A retrospective observational cohort study in a university hospital in Japan
    Nakagami, Gojiro
    Yokota, Shinichiroh
    Kitamura, Aya
    Takahashi, Toshiaki
    Morita, Kojiro
    Noguchi, Hiroshi
    Ohe, Kazuhiko
    Sanada, Hiromi
    [J]. INTERNATIONAL JOURNAL OF NURSING STUDIES, 2021, 119
  • [46] GENERALIZABLE MACHINE LEARNING FRAMEWORK FOR PREDICTIVE MODELING OF PATIENT OUTCOMES USING ONCOLOGY ELECTRONIC HEALTH RECORDS
    Stasiw, A.
    Falk, S.
    Garapati, S.
    Sridharma, S.
    Mendelsohn, D.
    Lakhtakia, S.
    Rech, A.
    Oldridge, D.
    Adamson, B.
    Chen, R.
    [J]. VALUE IN HEALTH, 2020, 23 : S74 - S74
  • [47] Using Electronic Health Records and Machine Learning to Predict Postpartum Depression
    Wang, Shuojia
    Pathak, Jyotishman
    Zhang, Yiye
    [J]. MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL, 2019, 264 : 888 - 892
  • [48] Using machine learning to detect sarcopenia from electronic health records
    Luo, Xiao
    Ding, Haoran
    Broyles, Andrea
    Warden, Stuart J.
    Moorthi, Ranjani N.
    Imel, Erik A.
    [J]. DIGITAL HEALTH, 2023, 9
  • [49] Descriptive and Predictive Analytics on Electronic Health Records using Machine Learning
    Anandi, V
    Ramesh, M.
    [J]. 2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [50] Using Machine Learning and Electronic Health Records to Predict Postpartum Depression
    Zhang, Yiye
    Joly, Rochelle
    Hermann, Alison
    Pathak, Jyotishman
    [J]. OBSTETRICS AND GYNECOLOGY, 2020, 135 : 59S - 60S