Contrasting the expression pattern change of polyamine oxidase genes and photosynthetic efficiency of maize (Zea mays L.) genotypes under drought stress

被引:13
|
作者
Pakdel, Hadis [1 ]
Hassani, Seyedeh Batool [1 ]
Ghotbi-Ravandi, Ali Akbar [1 ]
Bernard, Francoise [1 ]
机构
[1] Shahid Beheshti Univ, Fac Life Sci & Biotechnol, Dept Plant Sci & Biotechnol, Tehran, Iran
关键词
Antioxidant enzymes; chlorophyll a fluorescence; drought stress; polyamine oxidase; Zea mays; PLASTID TERMINAL OXIDASE; HORDEUM-VULGARE L; CHLOROPHYLL FLUORESCENCE; ANTIOXIDANT ENZYMES; LIPID-PEROXIDATION; CULTIVATED BARLEY; OXIDATIVE STRESS; WATER-STRESS; SALT STRESS; PLANTS;
D O I
10.1007/s12038-020-00044-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this study was to contrast the effects of drought stress on polyamine oxidases gene expression and activity as well as photosynthetic efficiency in relatively tolerant (Karoon) and sensitive (260) maize genotype.d Reduction in leaf relative water content as a result of drought led to increase in root growth, but diminished shoot growth indices. Under drought stress, activity of antioxidant enzyme, catalase, significantly increased in both genotypes, whereas significant higher activity of superoxide dismutase and peroxidase was only observed in Karoon genotype. Expression of polyamine oxidase (PAO) genes (zmPAO1, zmPAO2, zmPAO3, zmPAO4, zmPAO5, zmPAO6) and activity of enzymatic polyamine oxidation was increased in both genotypes under drought stress. The enhancement in PAO gene expression and enzyme activity was more prominent in Karoon cultivar compared to 260. Chlorophyll a fluorescence and fast induction kinetics were negatively influenced by drought stress. These parameters were more affected in 260 cultivar compared with Karoon. Our results suggest that under drought stress, higher activity of polyamine oxidase pathway in back-conversion of Spermine and spermidine to putrescine (protectant of photosynthetic apparatus) as well as higher antioxidant enzymes activity in Karoon cultivar, may play a role in higher efficiency of photosynthetic process in this cultivar.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage
    Chugh, Vishal
    Kaur, Narinder
    Grewal, M. S.
    Gupta, Anil K.
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2013, 50 (02): : 150 - 158
  • [22] β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.)
    Shaw, Arun K.
    Bhardwaj, Pardeep K.
    Ghosh, Supriya
    Roy, Sankhajit
    Saha, Suman
    Sherpa, Ang R.
    Saha, Samir K.
    Hossain, Zahed
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (03) : 2437 - 2453
  • [23] Rapid method of screening for drought stress tolerance in maize (Zea mays L.)
    Kumar, Bhupender
    Kumar, Krishan
    Jat, Shankar Lal
    Srivastava, Shraddha
    Tiwari, Tanu
    Kumar, Sonu
    Meenakshi
    Pradhan, Hans Raj
    Kumar, Brijesh
    Chaturvedi, Garima
    Jha, Abhishek Kumar
    Rakshit, Sujay
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2020, 80 (01) : 16 - 25
  • [24] Impact of drought stress on morphological and yield components in maize (Zea mays L.)
    Sellamuthu, Ramya
    Dhanarajan, Arulbalachandran
    Marimuthu, Ramachandran
    RESEARCH JOURNAL OF BIOTECHNOLOGY, 2022, 17 (10): : 77 - 85
  • [25] β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.)
    Arun K. Shaw
    Pardeep K. Bhardwaj
    Supriya Ghosh
    Sankhajit Roy
    Suman Saha
    Ang R. Sherpa
    Samir K. Saha
    Zahed Hossain
    Environmental Science and Pollution Research, 2016, 23 : 2437 - 2453
  • [26] Identification and expression of GRAS family genes in maize (Zea mays L.)
    Guo, Yuyu
    We, Hongyu
    Li, Xiang
    Li, Qi
    Zhao, Xinyan
    Duan, Xueqing
    An, Yanrong
    Lv, Wei
    An, Hailong
    PLOS ONE, 2017, 12 (09):
  • [27] Response of maize (Zea mays L.) to potassium nano-silica application under drought stress
    Aqaei, Pegah
    Weisany, Weria
    Diyanat, Marjan
    Razmi, Javad
    Struik, Paul C.
    JOURNAL OF PLANT NUTRITION, 2020, 43 (09) : 1205 - 1216
  • [28] Physiological Characteristic Changes and Transcriptome Analysis of Maize (Zea mays L.) Roots under Drought Stress
    Zou, Chenglin
    Tan, Hua
    Huang, Kaijian
    Zhai, Ruining
    Yang, Meng
    Huang, Aihua
    Wei, Xinxing
    Mo, Runxiu
    Xiong, Faqian
    INTERNATIONAL JOURNAL OF GENOMICS, 2024, 2024
  • [29] ROLE OF POTASSIUM IN PHYSIOLOGICAL FUNCTIONS OF SPRING MAIZE (Zea mays L.) GROWN UNDER DROUGHT STRESS
    Aslam, M.
    Zamir, M. S. I.
    Afzal, I.
    Amin, M.
    JOURNAL OF ANIMAL AND PLANT SCIENCES-JAPS, 2014, 24 (05): : 1452 - 1465
  • [30] Genomic Regions Associated with Root Traits under Drought Stress in Tropical Maize (Zea mays L.)
    Zaidi, P. H.
    Seetharam, K.
    Krishna, Girish
    Krishnamurthy, L.
    Gajanan, S.
    Babu, Raman
    Zerka, M.
    Vinayan, M. T.
    Vivek, B. S.
    PLOS ONE, 2016, 11 (10):