Orbit spaces for torus actions on Hessenberg varieties

被引:0
|
作者
Cherepanov, V. V. [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, Fac Comp Sci, Moscow, Russia
关键词
torus actions; orbit space; complexity of the action; Hessenberg varieties; MANIFOLDS; TOPOLOGY;
D O I
10.1070/SM9278
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study effective actions of the compact torus Tn-1 on smooth compact manifolds M-2n of even dimension with isolated fixed points. It is proved that under certain conditions on the weight vectors of the tangent representation, the orbit space of such an action is a manifold with corners. In the case of Hamiltonian actions, the orbit space is homotopy equivalent to Sn+1 \(U-1 (sic)center dot center dot center dot(sic)U-l), the complement to the union of disjoint open subsets of the (n + 1)-sphere. The results obtained are applied to regular Hessenberg varieties and isospectral manifolds of Hermitian matrices of step type.
引用
收藏
页码:1765 / 1784
页数:20
相关论文
共 50 条
  • [41] Joinings of higher rank torus actions on homogeneous spaces
    Einsiedler, Manfred
    Lindenstrauss, Elon
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2019, 129 (01): : 83 - 127
  • [42] ON ORBIT SPACES OF COMPACT GROUP-ACTIONS
    DEO, S
    PALANICHAMY, P
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1982, 40 (3-4): : 209 - 215
  • [43] G-ACTIONS WITH CLOSE ORBIT SPACES
    JOHN HARVEY
    Transformation Groups, 2017, 22 : 967 - 977
  • [44] G-ACTIONS WITH CLOSE ORBIT SPACES
    Harvey, John
    TRANSFORMATION GROUPS, 2017, 22 (04) : 967 - 977
  • [45] Hessenberg varieties and hyperplane arrangements
    Abe, Takuro
    Horiguchi, Tatsuya
    Masuda, Mikiya
    Murai, Satoshi
    Sato, Takashi
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 : 241 - 286
  • [46] Hessenberg varieties are not pure dimensional
    Tymoczko, Julianna S.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2006, 2 (03) : 779 - 794
  • [47] GEOMETRY OF REGULAR HESSENBERG VARIETIES
    HIRAKU ABE
    NAOKI FUJITA
    HAOZHI ZENG
    Transformation Groups, 2020, 25 : 305 - 333
  • [48] Hessenberg varieties of parabolic type
    Precup, Martha
    Tymoczko, Julianna
    GEOMETRIAE DEDICATA, 2021, 214 (01) : 519 - 542
  • [49] Which Hessenberg varieties are GKM?
    Goldin, Rebecca
    Tymoczko, Julianna
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2023, 19 (04) : 1899 - 1942
  • [50] Paving Hessenberg varieties by affines
    Tymoczko, Juhanna S.
    SELECTA MATHEMATICA-NEW SERIES, 2007, 13 (02): : 353 - 367