topological transformation group;
random field;
invariant sigma-algebra;
total variation;
coupling;
D O I:
暂无
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Consider a locally compact second countable topological transformation group acting measurably on an arbitrary space. We show that the distributions of two random elements X and X' in this space agree on invariant sets if and only if there is a random transformation Gamma such that Gamma X has the same distribution as X'. Applying this to random fields in d dimensions under site shifts, we show further that these equivalent claims are also equivalent to site-average total variation convergence. This convergence result extends to amenable groups.
机构:
Malardalen Univ, Div Math & Phys, Hogskoleplan 1,Box 883, S-72123 Vasteras, SwedenMalardalen Univ, Div Math & Phys, Hogskoleplan 1,Box 883, S-72123 Vasteras, Sweden
Malyarenko, Anatoliy
Ostoja-Starzewski, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Mech Sci & Engn, Inst Condensed Matter Theory, Urbana, IL 61801 USA
Univ Illinois, Beckman Inst, Urbana, IL 61801 USAMalardalen Univ, Div Math & Phys, Hogskoleplan 1,Box 883, S-72123 Vasteras, Sweden
Ostoja-Starzewski, Martin
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK,
2022,
73
(05):