Parallel design of sparse deep belief network with multi-objective optimization

被引:7
|
作者
Li, Yangyang [1 ]
Fang, Shuangkang [1 ]
Bai, Xiaoyu [1 ]
Jiao, Licheng [1 ]
Marturi, Naresh [2 ]
机构
[1] Xidian Univ, Int Res Ctr Intelligent Percept & Computat, Sch Artificial Intelligence,Minist Educ,Joint Int, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Shaanxi, Peoples R China
[2] Univ Birmingham, Extreme Robot Lab, Edgbaston B15 2TT, England
基金
中国国家自然科学基金;
关键词
Restricted Boltzmann machine; Deep belief network; Multi-objective optimization; Parallel acceleration; Facial expression recognition; GPU; SCALE; CLASSIFICATION; RECOGNITION; ALGORITHM;
D O I
10.1016/j.ins.2020.03.084
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep belief network (DBN) is an import deep learning model and restricted Boltzmann machine (RBM) is one of its basic models. The traditional DBN and RBM have numerous redundant features. Hence an improved strategy is required to perform sparse operations on them. Previously, we have proposed our own sparse DBN (SDBN): using a multi-objective optimization (MOP) algorithm to learn sparse features, which solves the contradiction between the reconstruction error and network sparsity of RBM. Due to the optimization algorithm and millions of parameters of the network itself, the training process is difficult. Therefore, in this paper, we propose an efficient parallel strategy to speed up the training of SDBN networks. Self-adaptive Quantum Multi-objectives Evolutionary algorithm based on Decomposition (SA-QMOEA/D) that we have proposed as the multi-objective optimization algorithm has the hidden parallelism of populations. Based on this, we not only parallelize the DBN network but also realize the parallelism of the multi-objective optimization algorithm. In order to further verify the advantages of our approach, we apply it to the problem of facial expression recognition (FER). The obtained experimental results demonstrate that our parallel algorithm achieves a significant speedup performance and a higher accuracy rate over previous CPU implementations and other conventional methods. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:24 / 42
页数:19
相关论文
共 50 条
  • [21] Robust multi-objective optimization of parallel manipulators
    Fabian A. Lara-Molina
    Didier Dumur
    Meccanica, 2021, 56 : 2843 - 2860
  • [22] A Parallel Framework for Multi-objective Evolutionary Optimization
    Dasgupta, Dipankar
    Becerra, David
    Banceanu, Alex
    Nino, Fernando
    Simien, James
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [23] A parallel evolutionary approach to multi-objective optimization
    Feng, Xiang
    Lau, Francis C. M.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 1199 - 1206
  • [24] Joint sparse neural network compression via multi-application multi-objective optimization
    Chen, Jinzhuo
    Xu, Yongnan
    Sun, Weize
    Huang, Lei
    APPLIED INTELLIGENCE, 2021, 51 (11) : 7837 - 7854
  • [25] Joint sparse neural network compression via multi-application multi-objective optimization
    Jinzhuo Chen
    Yongnan Xu
    Weize Sun
    Lei Huang
    Applied Intelligence, 2021, 51 : 7837 - 7854
  • [26] SNO Multi-Objective implementation for Sparse Array Optimization
    Grimaccia, Francesco
    Mussetta, Marco
    Niccolai, Alessandro
    Pirinoli, Paola
    Zich, Riccardo E.
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 824 - 827
  • [27] Multi-Objective Optimization in Urban Design
    Bruno, Michele
    Henderson, Kerri
    Kim, Hong Min
    10TH INTERNATIONAL CONFERENCE ON MODELING AND APPLIED SIMULATION, MAS 2011, 2011, : 90 - 95
  • [28] Multi-Objective Optimization in Urban Design
    Bruno, Michele
    Henderson, Kerri
    Kim, Hong Min
    SYMPOSIUM ON SIMULATION FOR ARCHITECTURE AND URBAN DESIGN 2011 (SIMAUD 2011) - 2011 SPRING SIMULATION MULTICONFERENCE - BK 8 OF 8, 2011, : 102 - 109
  • [29] Multi-objective optimization for antenna design
    Poian, M.
    Poles, S.
    Bernasconi, F.
    Leroux, E.
    Steffe, W.
    Zolesi, M.
    2008 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, COMMUNICATIONS, ANTENNAS AND ELECTRONIC SYSTEMS, 2008, : 201 - +
  • [30] Multi-objective Transmission Network Planning Based on Multi-objective Optimization Algorithms
    Wang Xiaoming
    Yan Jubin
    Huang Yan
    Chen Hanlin
    Zhang Xuexia
    Zang Tianlei
    Yu Zixuan
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,