The tabular Strathbogie batholith in central Victoria

被引:10
|
作者
Phillips, G. N. [1 ,2 ]
Kisters, A. F. M. [1 ]
Clemens, J. D. [1 ]
机构
[1] Univ Stellenbosch, Dept Earth Sci, Matieland, South Africa
[2] Univ Melbourne, Sch Geog Earth & Atmospher Sci, Parkville, Vic, Australia
基金
美国国家航空航天局;
关键词
Strathbogie batholith; granite; hornfels; boundary; tabular sheets; Devonian; southeast Australia; Lachlan Orogen; step-and-stair geometry; FOLD INTERFERENCE PATTERNS; OVERPRINTING DEFORMATIONS; MELBOURNE ZONE; S-TYPE; EMPLACEMENT MECHANISM; IGNEOUS COMPLEX; SIERRA-NEVADA; MAGMA CHAMBER; DEL PAINE; PLUTON;
D O I
10.1080/08120099.2022.2032340
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The southern boundary of the high level, discordant, Devonian Strathbogie batholith in central Victoria includes two near-linear sections that strike east-west, and one north-south. Field mapping has delineated the 100 km southern boundary with 2200 waypoints taken where granite and hornfels are within 10 m of one another. There is 790 m of topographic relief along the southern boundary and, where the mapping is overlain on contours, there are intervals that reflect a steep-dipping contact and others that reflect near-horizontal contacts. Of the latter, some reflect the granite roof and others the floor. Complementary evidence from mineralogic and textural data indicates a strong correlation between the interpreted roof of the granite and the abundance of tourmaline, aplite and pegmatite. When combined, the roof and floor intervals indicate a batholith thickness up to 350 m; nowhere along the southern boundary can a thickness of 1 km be demonstrated. Along the southern boundary, at least, the batholith shape is a thin, tabular and extensive composite granite sheet analogous to a pizza rather than a pipe. The roof of the granite is nearly horizontal in both east-west and north-south sections, and the plateaux today are close to the batholith roof. On regional and local scales, granite emplacement was determined by pre-existing anisotropies, such as master joint sets, across which the propagation of magma-filled fractures (granite sheets) was arrested. The emplacement records a fine balance between magma pressure, and the interplay of lower confining (overburden) pressures and pre-existing anisotropies that also facilitated roof uplift. The opportunistic magmas used the slightest variations of those parameters. This interpretation of the Strathbogie batholith matches examples in the Himalaya and Chilean Andes but differs markedly from the portrayal of very large batholiths beneath Cu-Au porphyry systems.
引用
收藏
页码:776 / 800
页数:25
相关论文
共 50 条