On the Effectiveness of Cost Sensitive Neural Networks for Software Defect Prediction

被引:1
|
作者
Muthukumaran, K. [1 ]
Dasgupta, Amrita [1 ]
Abhidnya, Shirode [1 ]
Neti, Lalita Bhanu Murthy [1 ]
机构
[1] BITS Pilani Hyderabad Campus, Hyderabad, India
关键词
Software defect prediction; Cost-sensitive neural networks; Misclassification cost; CLASSIFICATION TECHNIQUES; EMPIRICAL-ANALYSIS; METRICS;
D O I
10.1007/978-3-319-60618-7_55
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The cost of fixing a software defect varies with the phase in which it is uncovered. Defect found during post-release phase costs much more than the defect that is uncovered in pre-release phase. Hence defect prediction models have been proposed to predict bugs in pre-release phase. For any prediction model, there are two kinds of misclassification errors - Type I and Type II errors. Type II errors are found to be more costly than Type I errors for defect prediction problem. However there have been only few studies that have considered misclassifications costs while building or evaluating defect predictions models. We have built classification models using three cost-sensitive boosting Neural Network methods, namely, CSBNN-TM, CSBNN-WU1 and CSBNN-WU2. We have compared the performance of these cost sensitive Neural Networks with the traditional machine learning algorithms like Logistic Regression, Naive Bayes, Random Forest, Bayesian Network, Neural Networks, k-Nearest Neighbors and Decision Tree. We have compared the performance of the resultant models using cost centric measure - Normalized Expected Cost of Misclassification (NECM).
引用
收藏
页码:557 / 570
页数:14
相关论文
共 50 条
  • [21] Discriminating features-based cost-sensitive approach for software defect prediction
    Ali, Aftab
    Khan, Naveed
    Abu-Tair, Mamun
    Noppen, Joost
    McClean, Sally
    McChesney, Ian
    AUTOMATED SOFTWARE ENGINEERING, 2021, 28 (02)
  • [22] Discriminating features-based cost-sensitive approach for software defect prediction
    Aftab Ali
    Naveed Khan
    Mamun Abu-Tair
    Joost Noppen
    Sally McClean
    Ian McChesney
    Automated Software Engineering, 2021, 28
  • [23] Software Defect Prediction Using Artificial Neural Networks: A Systematic Literature Review
    Khan, Muhammad Adnan
    Elmitwally, Nouh Sabri
    Abbas, Sagheer
    Aftab, Shabib
    Ahmad, Munir
    Fayaz, Muhammad
    Khan, Faheem
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [24] Convolutional Neural Networks over Control Flow Graphs for Software Defect Prediction
    Anh Viet Phan
    Minh Le Nguyen
    Lam Thu Bui
    2017 IEEE 29TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2017), 2017, : 45 - 52
  • [25] Software defect prediction using Bayesian networks
    Ahmet Okutan
    Olcay Taner Yıldız
    Empirical Software Engineering, 2014, 19 : 154 - 181
  • [26] Software defect prediction with semantic and structural information of codes based on Graph Neural Networks
    Zhou, Chunying
    He, Peng
    Zeng, Cheng
    Ma, Ju
    INFORMATION AND SOFTWARE TECHNOLOGY, 2022, 152
  • [27] Software defect prediction using Bayesian networks
    Okutan, Ahmet
    Yildiz, Olcay Taner
    EMPIRICAL SOFTWARE ENGINEERING, 2014, 19 (01) : 154 - 181
  • [28] Neighbor cleaning learning based cost-sensitive ensemble learning approach for software defect prediction
    Li, Li
    Su, Renjia
    Zhao, Xin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (12):
  • [29] A cognitive and neural network approach for software defect prediction
    Rajnish, Kumar
    Bhattacharjee, Vandana
    Journal of Intelligent and Fuzzy Systems, 2022, 43 (05): : 6477 - 6503
  • [30] A cognitive and neural network approach for software defect prediction
    Rajnish, Kumar
    Bhattacharjee, Vandana
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (05) : 6477 - 6503