On the Effectiveness of Cost Sensitive Neural Networks for Software Defect Prediction

被引:1
|
作者
Muthukumaran, K. [1 ]
Dasgupta, Amrita [1 ]
Abhidnya, Shirode [1 ]
Neti, Lalita Bhanu Murthy [1 ]
机构
[1] BITS Pilani Hyderabad Campus, Hyderabad, India
关键词
Software defect prediction; Cost-sensitive neural networks; Misclassification cost; CLASSIFICATION TECHNIQUES; EMPIRICAL-ANALYSIS; METRICS;
D O I
10.1007/978-3-319-60618-7_55
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The cost of fixing a software defect varies with the phase in which it is uncovered. Defect found during post-release phase costs much more than the defect that is uncovered in pre-release phase. Hence defect prediction models have been proposed to predict bugs in pre-release phase. For any prediction model, there are two kinds of misclassification errors - Type I and Type II errors. Type II errors are found to be more costly than Type I errors for defect prediction problem. However there have been only few studies that have considered misclassifications costs while building or evaluating defect predictions models. We have built classification models using three cost-sensitive boosting Neural Network methods, namely, CSBNN-TM, CSBNN-WU1 and CSBNN-WU2. We have compared the performance of these cost sensitive Neural Networks with the traditional machine learning algorithms like Logistic Regression, Naive Bayes, Random Forest, Bayesian Network, Neural Networks, k-Nearest Neighbors and Decision Tree. We have compared the performance of the resultant models using cost centric measure - Normalized Expected Cost of Misclassification (NECM).
引用
收藏
页码:557 / 570
页数:14
相关论文
共 50 条
  • [1] Cost-sensitive boosting neural networks for software defect prediction
    Zheng, Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (06) : 4537 - 4543
  • [2] Software defect prediction using cost-sensitive neural network
    Arar, Omer Faruk
    Ayan, Kursat
    APPLIED SOFT COMPUTING, 2015, 33 : 263 - 277
  • [3] Software defect prediction via cost-sensitive Siamese parallel fully-connected neural networks
    Zhao, Linchang
    Shang, Zhaowei
    Zhao, Ling
    Zhang, Taiping
    Tang, Yuan Yan
    NEUROCOMPUTING, 2019, 352 : 64 - 74
  • [4] Misclassification Cost-Sensitive Software Defect Prediction
    Xu, Ling
    Wang, Bei
    Liu, Ling
    Zhou, Mo
    Liao, Shengping
    Yan, Meng
    2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2018, : 256 - 263
  • [5] Software Defect Prediction Using Neural Networks
    Jindal, Rajni
    Malhotra, Ruchika
    Jain, Abha
    2014 3RD INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (ICRITO) (TRENDS AND FUTURE DIRECTIONS), 2014,
  • [6] Cost Effectiveness of Software Defect Prediction in an Industrial Project
    Hryszko, Jaroslaw
    Madeyski, Lech
    FOUNDATIONS OF COMPUTING AND DECISION SCIENCES, 2018, 43 (01) : 7 - 35
  • [7] Cost-sensitive Dictionary Learning for Software Defect Prediction
    Liang Niu
    Jianwu Wan
    Hongyuan Wang
    Kaiwei Zhou
    Neural Processing Letters, 2020, 52 : 2415 - 2449
  • [8] Cost-sensitive Dictionary Learning for Software Defect Prediction
    Niu, Liang
    Wan, Jianwu
    Wang, Hongyuan
    Zhou, Kaiwei
    NEURAL PROCESSING LETTERS, 2020, 52 (03) : 2415 - 2449
  • [9] Cost Sensitive Decision Forest and Voting for Software Defect Prediction
    Siers, Michael J.
    Islam, Md Zahidul
    PRICAI 2014: TRENDS IN ARTIFICIAL INTELLIGENCE, 2014, 8862 : 929 - 936
  • [10] Defect Prediction in Software Repositories with Artificial Neural Networks
    Bautista, Ana M.
    San Feliu, Tomas
    TRENDS AND APPLICATIONS IN SOFTWARE ENGINEERING, 2016, 405 : 165 - 174