Noncollinear spin-density-wave antiferromagnetism in FeAs

被引:51
|
作者
Rodriguez, E. E. [1 ]
Stock, C. [1 ,2 ]
Krycka, K. L. [1 ]
Majkrzak, C. F. [1 ]
Zajdel, P. [3 ]
Kirshenbaum, K. [4 ]
Butch, N. P. [4 ]
Saha, S. R. [4 ]
Paglione, J. [4 ]
Green, M. A. [1 ,5 ]
机构
[1] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20878 USA
[2] Indiana Univ, Bloomington, IN 47408 USA
[3] Univ Silesia, Inst Phys, Div Phys Crystals, PL-40007 Katowice, Poland
[4] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
关键词
HIGH-TEMPERATURE SUPERCONDUCTIVITY; MAGNETIC-STRUCTURE; PHASE-TRANSITIONS; NIAS-TYPE; MNP; SYMMETRY; LATTICE; CRAS; FEP;
D O I
10.1103/PhysRevB.83.134438
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The nature of the magnetism in the simplest iron arsenide is of fundamental importance in understanding the interplay between localized and itinerant magnetism and superconductivity. We present the magnetic structure of the itinerant monoarsenide FeAs with the B31 structure. Powder neutron diffraction confirms incommensurate modulated magnetism with wave vector q = (0.395 +/- 0.001)c* at 4 K, but can not distinguish between a simple spiral and a collinear spin-density-wave structure. Polarized single-crystal diffraction confirms that the structure is best described as a noncollinear spin-density wave arising from a combination of itinerant and localized behavior with spin amplitude along the b-axis direction being (15 +/- 5)% larger than in the a direction. Furthermore, the propagation vector is temperature dependent, and the magnetization near the critical point indicates a two-dimensional Heisenberg system. The magnetic structures of closely related systems are discussed and compared to that of FeAs.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] SPIN-DENSITY-WAVE IN THE T-J MODEL
    AVIGNON, M
    TUGUSHEV, V
    [J]. PHYSICS LETTERS A, 1995, 209 (3-4) : 198 - 200
  • [42] STABILITY AND SYMMETRY OF THE SPIN-DENSITY-WAVE STATE IN CHROMIUM
    KRUGER, E
    [J]. PHYSICAL REVIEW B, 1989, 40 (16): : 11090 - 11103
  • [43] Hysteretic spin-density-wave ordering in confined geometries
    Fullerton, EE
    Robertson, JL
    Prinsloo, ARE
    Alberts, HL
    Bader, SD
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (23)
  • [44] MAGNETOELASTIC ANOMALIES IN SPIN-DENSITY-WAVE CR ALLOYS
    FAWCETT, E
    ALBERTS, HL
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (03) : 613 - 625
  • [45] TC ENHANCEMENT IN SUPERCONDUCTOR AND SPIN-DENSITY-WAVE COEXISTENCE
    GULACSI, M
    GULACSI, Z
    [J]. PHYSICAL REVIEW B, 1989, 39 (01): : 714 - 717
  • [46] Spin-density-wave transition in systems with chemical dimerization
    Tugushev, V
    Caprara, S
    Avignon, M
    [J]. PHYSICAL REVIEW B, 1996, 54 (08): : 5466 - 5470
  • [47] Pseudogap in underdoped cuprates and spin-density-wave fluctuations
    Sedrakyan, Tigran A.
    Chubukov, Andrey V.
    [J]. PHYSICAL REVIEW B, 2010, 81 (17)
  • [48] Optical response of the spin-density-wave ground state
    Dressel, M
    Degiorgi, L
    Brinckmann, J
    Schwartz, A
    Gruner, G
    [J]. PHYSICA B, 1997, 230 : 1008 - 1010
  • [49] LOW-TEMPERATURE SPIN-DENSITY-WAVE TRANSPORT
    MIHALY, G
    [J]. SYNTHETIC METALS, 1993, 56 (2-3) : 2587 - 2592
  • [50] MAGNETOELASTIC EFFECTS IN THE SPIN-DENSITY-WAVE PHASE OF MNSI
    PLUMER, ML
    WALKER, MB
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (35): : 7181 - 7191