A Deep Learning Model with Radiomics Analysis Integration for Glioblastoma Post-Resection Survival Prediction

被引:0
|
作者
Hu, Z. [1 ]
Yang, Z. [2 ]
Zhao, J. [1 ]
Zhang, H. [1 ]
Vaios, E. [2 ]
Lafata, K. [2 ]
Yin, F. [2 ]
Wang, C. [2 ]
机构
[1] Duke Kunshan Univ, Kunshan, Jiangsu, Peoples R China
[2] Duke Univ, Durham, NC USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
TU-D930-Ie
引用
收藏
页码:E364 / E364
页数:1
相关论文
共 50 条
  • [41] MRI Sequence Impact on Deep Learning Extraction of Prognostic Features for Glioblastoma Survival Prediction
    Mahootiha, Maryamalsadat
    Qadir, Hemin Ali
    Balasingham, Ilangko
    COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927
  • [42] Learned Deep Radiomics for Survival Analysis with Attention
    Morvan, Ludivine
    Nanni, Cristina
    Michaud, Anne-Victoire
    Jamet, Bastien
    Bailly, Clement
    Bodet-Milin, Caroline
    Chauvie, Stephane
    Touzeau, Cyrille
    Moreau, Philippe
    Zamagni, Elena
    Kraeber-Bodere, Francoise
    Carlier, Thomas
    Mateus, Diana
    PREDICTIVE INTELLIGENCE IN MEDICINE, PRIME 2020, 2020, 12329 : 35 - 45
  • [43] Deep learning radiomics-based prediction model of metachronous distant metastasis following curative resection for retroperitoneal leiomyosarcoma: a bicentric study
    Tian, Zhen
    Cheng, Yifan
    Zhao, Shuai
    Li, Ruiqi
    Zhou, Jiajie
    Sun, Qiannan
    Wang, Daorong
    CANCER IMAGING, 2024, 24 (01)
  • [44] Pancancer survival prediction using a deep learning architecture with multimodal representation and integration
    Fan, Ziling
    Jiang, Zhangqi
    Liang, Hengyu
    Han, Chao
    NEURO-ONCOLOGY ADVANCES, 2023, 5 (01)
  • [45] Impact of deep learning segmentation methods on the robustness of MR glioblastoma radiomics
    Vuong, D.
    Daetwyler, K.
    Bogowicz, M.
    Radojewski, P.
    Meier, R.
    Reyes, M.
    Saltybaeva, N.
    Depeursinge, A.
    Bach, M.
    Piccirelli, M.
    Guckenberger, M.
    Tanadini-Lang, S.
    Wies, R.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1594 - S1595
  • [46] Multi-Parametric Deep Learning Model for Prediction of Overall Survival after Postoperative Concurrent Chemoradiotherapy in Glioblastoma Patients
    Yoon, Han Gyul
    Cheon, Wonjoong
    Jeong, Sang Woon
    Kim, Hye Seung
    Kim, Kyunga
    Nam, Heerim
    Han, Youngyih
    Lim, Do Hoon
    CANCERS, 2020, 12 (08) : 1 - 12
  • [47] Clinic, CT radiomics, and deep learning combined model for the prediction of invasive pulmonary aspergillosis
    Zhang, Kaixiang
    Zhao, Guoxin
    Liu, Yinghui
    Huang, Yongbin
    Long, Jie
    Li, Ning
    Yan, Huangze
    Zhang, Xiuzhu
    Ma, Jingzhi
    Zhang, Yuming
    BMC MEDICAL IMAGING, 2024, 24 (01):
  • [48] A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
    Ammari, Samy
    Salle de Chou, Raoul
    Balleyguier, Corinne
    Chouzenoux, Emilie
    Touat, Mehdi
    Quillent, Arnaud
    Dumont, Sarah
    Bockel, Sophie
    Garcia, Gabriel C. T. E.
    Elhaik, Mickael
    Francois, Bidault
    Borget, Valentin
    Lassau, Nathalie
    Khettab, Mohamed
    Assi, Tarek
    DIAGNOSTICS, 2021, 11 (11)
  • [49] Survival prediction of glioblastoma patients at initial diagnosis using multimodal radiomics analyses
    Kaiser, L.
    Quach, S.
    Zounek, A. J.
    Zatcepin, A.
    Holzgreve, A.
    Kirchleitner, S.
    Ruf, V. C.
    Brendel, M.
    Thon, N.
    Herms, J.
    Riemenschneider, M. J.
    Stoecklein, S.
    Niyazi, M.
    Rupprecht, R.
    Tonn, J.
    Bartenstein, P.
    Ziegler, S.
    von Baumgarten, L.
    Albert, N. L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S230 - S230
  • [50] SERIAL QUANTITATIVE MRI RADIOMICS SIGNATURE FOR PREDICTION OF SURVIVAL IN GLIOBLASTOMA - A PILOT STUDY
    Chen, Cecil
    Martin, Philip
    Koh, Eng-Siew
    Brighi, Caterina
    Aly, Farhannah
    Rai, Robba
    Holloway, Lois
    Metcalfe, Peter
    Pillay, Sugendran
    NEURO-ONCOLOGY, 2023, 25