Computational Analysis of Therapeutic Enzyme Uricase from Different Source Organisms

被引:6
|
作者
Nelapati, Anand Kumar [1 ]
PonnanEttiyappan, JagadeeshBabu [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Chem Engn, Mangalore 575025, Karnataka, India
关键词
Uricase; homology; MSA; phylogenetic tree; motifs; domains; physicochemical properties; IN-SILICO ANALYSIS; URATE OXIDASE; PURIFICATION; ACID; SEQUENCE; ESCHERICHIA; CLONING; EXPRESSION; PROTEASES; PROTEINS;
D O I
10.2174/1570164616666190617165107
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Hyperuricemia and gout are the conditions, which is a response of accumulation of uric acid in the blood and urine. Uric acid is the product of purine metabolic pathway in humans. Uricase is a therapeutic enzyme that can enzymatically reduces the concentration of uric acid in serum and urine into more a soluble allantoin. Uricases are widely available in several sources like bacteria, fungi, yeast, plants and animals. Objective: The present study is aimed at elucidating the structure and physiochemical properties of uricase by insilico analysis. Methods: A total number of sixty amino acid sequences of uricase belongs to different sources were obtained from NCBI and different analysis like Multiple Sequence Alignment (MSA), homology search, phylogenetic relation, motif search, domain architecture and physiochemical properties including pI, EC, Ai, Ii, and were performed. Results: Multiple sequence alignment of all the selected protein sequences has exhibited distinct difference between bacterial, fungal, plant and animal sources based on the position-specific existence of conserved amino acid residues. The maximum homology of all the selected protein sequences is between 51-388. In singular category, homology is between 16-337 for bacterial uricase, 14-339 for fungal uricase, 12-317 for plants uricase, and 37-361 for animals uricase. The phylogenetic tree constructed based on the amino acid sequences disclosed clusters indicating that uricase is from different source. The physiochemical features revealed that the uricase amino acid residues are in between 300338 with a molecular weight as 33-39kDa and theoretical pI ranging from 4.95-8.88. The amino acid composition results showed that valine amino acid has a high average frequency of 8.79 percentage compared to different amino acids in all analyzed species. Conclusion: In the area of bioinformatics field, this work might be informative and a stepping-stone to other researchers to get an idea about the physicochemical features, evolutionary history and structural motifs of uricase that can be widely used in biotechnological and pharmaceutical industries. Therefore, the proposed in silico analysis can be considered for protein engineering work, as well as for gout therapy.
引用
收藏
页码:59 / 77
页数:19
相关论文
共 50 条
  • [21] Uricase from leaves: Its purification and characterization from three different higher plants
    Montalbini, P
    Redondo, J
    Caballero, JL
    Cardenas, J
    Pineda, M
    PLANTA, 1997, 202 (03) : 277 - 283
  • [22] Uricase from leaves: its purification and characterization from three different higher plants
    P. Montalbini
    J. Redondo
    J. L. Caballero
    J. Cárdenas
    M. Pineda
    Planta, 1997, 202 : 277 - 283
  • [23] PURIFICATION AND CHARACTERIZATION OF URICASE, A NITROGEN-REGULATED ENZYME, FROM NEUROSPORA-CRASSA
    WANG, LWC
    MARZLUF, GA
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1980, 201 (01) : 185 - 193
  • [24] A computational analysis of antisense off-targets in prokaryotic organisms
    Worley-Morse, Thomas O.
    Gunsch, Claudia K.
    GENOMICS, 2015, 105 (02) : 123 - 130
  • [25] Structural and expression analysis of uricase mRNA from Lotus japonicus
    Takane, K
    Tajima, S
    Kouchi, H
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (10) : 1156 - 1160
  • [26] Potential Therapeutic Agents from the Red Sea Organisms
    Alam, Mohammad Abrar
    MEDICINAL CHEMISTRY, 2014, 10 (06) : 550 - 563
  • [27] Experimental and computational analysis of the ancestry of an evolutionary young enzyme from histidine biosynthesis
    Kinateder, Thomas
    Drexler, Lukas
    Straub, Kristina
    Merkl, Rainer
    Sterner, Reinhard
    PROTEIN SCIENCE, 2023, 32 (01)
  • [28] Goan mangrove yeast: a source of therapeutic enzyme L-asparaginase
    Marathe, Aabha
    Charya, Lakshangy
    FOLIA MICROBIOLOGICA, 2025,
  • [29] Analysis of donor splice sites in different eukaryotic organisms
    Rogozin, IB
    Milanesi, L
    JOURNAL OF MOLECULAR EVOLUTION, 1997, 45 (01) : 50 - 59
  • [30] Frequency Analysis of the Splice Site Regions in Different Organisms
    Rekha, T. Shashi
    Mitra, Chanchal K.
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2007, 4 (02):