Content adaptive watermark embedding in the multiwavelet transform using a stochastic image model

被引:0
|
作者
Kwon, KR
Kwon, SG
Nam, JH
Tewfik, AH
机构
[1] Pusan Univ Foreign Studies, Div Elect & Comp Engn, Pusan 608738, South Korea
[2] Kyungpook Natl Univ, Sch Elect Engn & Comp Sci, Taegu 702701, South Korea
[3] ETRI, Broadcasting Media Res Dept, Taejon 305350, South Korea
[4] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
来源
DIGITAL WATERMARKING | 2002年 / 2613卷
关键词
multiwavelet; successive subband quantization; perceptually significant coefficients; noise visibility function; stochastic image model;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Content adaptive watermark embedding algorithm using a stochastic image model in the multiwavelet transform is proposed in this paper. Usually, watermark is embedded with the same embedding strength regardless of local properties of the cover image, so the visible artifacts are taken placed at flat regions. A watermark is embedded into the perceptually significant coefficients (PSCs) of each subband using multiwavelet transform. The PSCs in high frequency subband are selected by SSQ, that is, by setting the thresholds as the one half of the largest coefficient in each subband. The perceptual model is applied with a stochastic approach based on noise visibility function (NVF) that has local image properties for watermark embedding. This model uses stationary Generalized Gaussian model characteristic because Watermark has noise properties. The watermark estimation use shape parameter and variance of subband region, it is derive content adaptive criteria according to edge and texture, and flat region.
引用
收藏
页码:249 / 263
页数:15
相关论文
共 50 条
  • [41] Study on the image fusion of closed-loop structure using discrete multiwavelet transform
    Information Processing Center, University of Science and Technology of China, Hefei 230000, China
    [J]. J. Comput. Inf. Syst, 2006, 3 (1111-1118):
  • [42] Image data embedding system for watermarking using Fresnel transform
    Kang, S
    Aoki, Y
    [J]. IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS, PROCEEDINGS VOL 1, 1999, : 885 - 889
  • [43] Adaptive image steganography using contourlet transform
    Fakhredanesh, Mohammad
    Rahmati, Mohammad
    Safabakhsh, Reza
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2013, 22 (04)
  • [44] Image Registration Using Adaptive Polar Transform
    Matungka, Rittavee
    Zheng, Yuan F.
    Ewing, Robert L.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (10) : 2340 - 2354
  • [45] IMAGE REGISTRATION USING ADAPTIVE POLAR TRANSFORM
    Matungka, Rittavee
    Zheng, Yuan F.
    Ewing, Robert L.
    [J]. 2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2416 - 2419
  • [46] Additive watermark detectors based on a new hierarchical spatially adaptive image model
    Mairgiotis, Antonis
    Galatsanos, Nikolaos
    Yang, Yongi
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 2713 - +
  • [47] New additive watermark detectors based on a hierarchical spatially adaptive image model
    Mairgiotis, Antonis K.
    Galatsanos, Nikolaos P.
    Yang, Yongyi
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2008, 3 (01) : 29 - 37
  • [48] Watermark embedding mechanism using modulus-based for intellectual property protection on image data
    Wang, SJ
    Yang, KS
    [J]. E-COMMERCE AND WEB TECHNOLOGIES, PROCEEDINGS, 2002, 2455 : 333 - 342
  • [49] Stochastic nonlinear image restoration using the wavelet transform
    Robini, MC
    Magnin, IE
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (08) : 890 - 905
  • [50] SVD-based digital image watermarking using adaptive generated watermark
    Golshan, F.
    Mohammadi, K.
    [J]. IMAGING SCIENCE JOURNAL, 2014, 62 (01): : 3 - 10