A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations

被引:4
|
作者
Rong, Y. [1 ]
Fiordilino, J. A. [2 ,3 ]
Shi, F. [4 ]
Cao, Y. [1 ]
机构
[1] Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Guangdong, Peoples R China
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[3] Naval Surface Warfare Ctr Corona Div, Measurement Sci & Engn Dept, Corona, CA 92878 USA
[4] Harbin Inst Technol, Coll Sci, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Finite element method; Crank-Nicolson; Modular Voigt regularization; ORDER GLOBAL REGULARITY; EULER-VOIGT; BLOW-UP; FLOW; APPROXIMATION; PERFORMANCE; SYSTEM;
D O I
10.1007/s10915-022-01945-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a modular Crank-Nicolson based Voigt regularization algorithm for the Navier-Stokes equations. This algorithm adds a minimally intrusive module that not only implements Voigt regularization but also adds some numerical dissipation which is not existent in the monolithic algorithms. The additional dissipation induced by the method could act to dampen spurious oscillations, improve stability of numerical solutions, and yield improved accuracy with large-scale dynamics. Within, we prove that the algorithm is unconditionally stable. A convergence analysis is provided whereby O(Delta t(2) + alpha(2) + h(k)) convergence is proven for velocity solutions. Numerical tests illustrate both the proven stability and convergence properties and the benefit of modular Voigt regularization over the monolithic implementation.
引用
收藏
页数:35
相关论文
共 50 条