Unsupervised EEG feature extraction based on echo state network

被引:54
|
作者
Sun, Leilei [1 ]
Jin, Bo [2 ]
Yang, Haoyu [2 ]
Tong, Jianing [3 ]
Liu, Chuanren [4 ]
Xiong, Hui [5 ]
机构
[1] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
[2] Dalian Univ Technol, Sch Comp Sci, Dalian 116023, Peoples R China
[3] Tongji Univ, Dept Comp Sci & Technol, Shanghai 201804, Peoples R China
[4] Drexel Univ, LeBow Coll Business, Philadelphia, PA 19104 USA
[5] Rutgers State Univ, Management Sci & Informat Syst Dept, New Brunswick, NJ 08901 USA
基金
中国博士后科学基金;
关键词
EEG signals; Feature extraction; Echo state network; Autoencoder; RECURRENT NEURAL-NETWORKS; CLASSIFICATION; RECOGNITION; AUTOENCODER; MODEL;
D O I
10.1016/j.ins.2018.09.057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advanced analytics such as event detection, pattern recognition, clustering, and classification with electroencephalogram (EEG) data often rely on extracted EEG features. Most of the existing EEG feature extraction approaches are hand-designed with expert knowledge or prior assumptions, which may lead to inferior analytical performances. In this paper, we develop a fully data-driven EEG feature extraction method by applying recurrent autoencoders on multivariate EEG signals. We use an Echo State Network (ESN) to encode EEG signals to EEG features, and then decode them to recover the original EEG signals. Therefore, we name our method feature extraction based on echo state network, or simply FE-ESN. We show that the well-known autoregression-based EEG feature extraction can be seen as a simplified variation of our FE-ESN method. We have conducted experiments on real-world EEG data to evaluate the effectiveness of FE-ESN for both classification tasks and clustering tasks. Experimental results demonstrate the superiority of FE-ESN over the state-of-the-art methods. This paper not only provides a novel EEG feature extraction method but also opens up a new way towards unsupervised EEG feature design. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] Unsupervised neural network learning procedures for feature extraction and classification
    Becker, S
    Plumbley, M
    APPLIED INTELLIGENCE, 1996, 6 (03) : 185 - 203
  • [22] An Efficient Feature Extraction Network for Unsupervised Hyperspectral Change Detection
    Zhao, Hongyu
    Feng, Kaiyuan
    Wu, Yue
    Gong, Maoguo
    REMOTE SENSING, 2022, 14 (18)
  • [23] Deep Unsupervised Representation Learning for Feature-Informed EEG Domain Extraction
    Ng, Han Wei
    Guan, Cuntai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 4882 - 4894
  • [24] Optimized Echo State Network with Intrinsic Plasticity for EEG-Based Emotion Recognition
    Fourati, Rahma
    Ammar, Boudour
    Aouiti, Chaouki
    Sanchez-Medina, Javier
    Alimi, Adel M.
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 718 - 727
  • [25] An EEG emotion recognition method based on transfer learning and echo state network for HilCPS
    Zhou, Jian
    Chu, Shujie
    Li, Xin
    Xiao, Fu
    Sun, Lijuan
    MICROPROCESSORS AND MICROSYSTEMS, 2021, 87
  • [26] EEG-Based Emotion Recognition by Using Convolutional Echo-State Network
    Chao H.
    Ma Q.
    Liu Y.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2022, 45 (02): : 36 - 43
  • [27] Feature Extraction Method for EEG based Biometrics
    Li, Sukun
    Cha, Sung-Hyuk
    2019 3RD INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2019), 2019, 1229
  • [28] EEG Feature Extraction Based on Rough Set
    Mu, Zhendong
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MANAGEMENT, EDUCATION, INFORMATION AND CONTROL, 2015, 125 : 1246 - 1249
  • [29] EEG feature extraction based on wavelet decomposition
    Hu, Jian-feng
    Mu, Zhen-dong
    Yin, Jing-hai
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5, 2014, 496-500 : 2023 - 2026
  • [30] Unsupervised Feature Learning for EEG-based Emotion Recognition
    Lan, Zirui
    Sourina, Olga
    Wang, Lipo
    Scherer, Reinhold
    Mueller-Putz, Gernot
    2017 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2017, : 182 - 185