Cosmic metal density evolution in neutral gas: insights from observations and cosmological simulations

被引:15
|
作者
Yates, Robert M. [1 ]
Peroux, Celine [2 ,3 ]
Nelson, Dylan [4 ]
机构
[1] Univ Surrey, Dept Phys, Stag Hill, Guildford GU2 7XH, Surrey, England
[2] European Southern Observ, Karl Schwarzschildstr 2, D-85748 Garching, Germany
[3] Aix Marseille Univ, LAM Lab dAstrophys Marseille UMR 7326, CNRS, F-13388 Marseille, France
[4] Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, Albert Ueberle Str 2, D-69120 Heidelberg, Germany
基金
英国科研创新办公室;
关键词
methods: numerical; galaxies: abundances; galaxies: evolution; galaxies: formation; MASS-METALLICITY RELATION; STAR-FORMATION RATE; LYMAN-ALPHA SYSTEMS; TO-MOLECULAR TRANSITION; L-GALAXIES; 2020; DAMPED LYMAN; ILLUSTRISTNG SIMULATIONS; SEMIANALYTIC MODELS; EAGLE SIMULATIONS; FORMATION HISTORY;
D O I
10.1093/mnras/stab2837
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We contrast the latest observations of the cosmic metal density in neutral gas (.met,neu) with three cosmological galaxy evolution simulations: L-GALAXIES 2020, TNG100, and EAGLE. We find that the fraction of total metals that are in neutral gas is <40 per cent at 3 less than or similar to z less than or similar to 5 in these simulations, whereas observations of damped Lyman-alpha (DLA) systems suggest greater than or similar to 85 per cent. In all three simulations, hot, low-density gas is also a major contributor to the cosmic metal budget, even at high redshift. By considering the evolution in cosmic SFR density (rho(SFR)), neutral gas density (rho(HI)), and mean gas-phase metallicity ([< M/H >](neu), we determine two possible ways in which the absolute rho(met,neu) observed in DLAs at high redshift can be matched by simulations: (i) the rho(SFR) at z greater than or similar to 3 is greater than inferred from current FUV observations, or (ii) current high-redshift DLA metallicity samples have a higher mean host mass than the overall galaxy population. If the first is correct, TNG100 would match the ensemble data best, however there would be an outstanding tension between the currently observed rho(SFR) and rho(met,neu). If the second is correct, L-GALAXIES 2020 would match the ensemble data best, but would require an increase in neutral gas mass inside subhaloes above z similar to 2.5. If neither is correct, EAGLE would match the ensemble data best, although at the expense of overestimating [< M/H >](neu). Modulo details related to numerical resolution and HI mass modelling in simulations, these incompatibilities highlight current tensions between key observed cosmic properties at high redshift.
引用
收藏
页码:3535 / 3550
页数:16
相关论文
共 50 条
  • [41] Cosmological density of dark compact objects from observations of lensed QSOS
    Claeskens, JF
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THINKING, OBSERVING AND MINING THE UNIVERSE, 2004, : 73 - 78
  • [42] Reconstruction of Cosmological Initial Density Field with Observations from the Epoch of Reionization
    Zhou, Meng
    Mao, Yi
    ASTROPHYSICAL JOURNAL, 2024, 965 (01):
  • [43] Evolution of Cosmic Molecular Gas Mass Density from z ∼ 0 to z=1-1.5
    Maeda, Fumiya
    Ohta, Kouji
    Seko, Akifumi
    ASTROPHYSICAL JOURNAL, 2017, 835 (02):
  • [44] On the dynamical state of galaxy clusters: insights from cosmological simulations - II.
    Cui, Weiguang
    Power, Chris
    Borgani, Stefano
    Knebe, Alexander
    Lewis, Geraint F.
    Murante, Giuseppe
    Poole, Gregory B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (02) : 2502 - 2510
  • [45] ORIGIN: metal creation and evolution from the cosmic dawn
    den Herder, Jan-Willem
    Piro, Luigi
    Ohashi, Takaya
    Kouveliotou, Chryssa
    Hartmann, Dieter H.
    Kaastra, Jelle S.
    Amati, L.
    Andersen, M. I.
    Arnaud, M.
    Atteia, J. -L.
    Bandler, S.
    Barbera, M.
    Barcons, X.
    Barthelmy, S.
    Basa, S.
    Basso, S.
    Boer, M.
    Branchini, E.
    Branduardi-Raymont, G.
    Borgani, S.
    Boyarsky, A.
    Brunetti, G.
    Budtz-Jorgensen, C.
    Burrows, D.
    Butler, N.
    Campana, S.
    Caroli, E.
    Ceballos, M.
    Christensen, F.
    Churazov, E.
    Comastri, A.
    Colasanti, L.
    Cole, R.
    Content, R.
    Corsi, A.
    Costantini, E.
    Conconi, P.
    Cusumano, G.
    de Plaa, J.
    De Rosa, A.
    Del Santo, M.
    Di Cosimo, S.
    De Pasquale, M.
    Doriese, R.
    Ettori, S.
    Evans, P.
    Ezoe, Y.
    Ferrari, L.
    Finger, H.
    Figueroa-Feliciano, T.
    EXPERIMENTAL ASTRONOMY, 2012, 34 (02) : 519 - 549
  • [46] ORIGIN: metal creation and evolution from the cosmic dawn
    Jan-Willem den Herder
    Luigi Piro
    Takaya Ohashi
    Chryssa Kouveliotou
    Dieter H. Hartmann
    Jelle S. Kaastra
    L. Amati
    M. I. Andersen
    M. Arnaud
    J. -L. Attéia
    S. Bandler
    M. Barbera
    X. Barcons
    S. Barthelmy
    S. Basa
    S. Basso
    M. Boer
    E. Branchini
    G. Branduardi-Raymont
    S. Borgani
    A. Boyarsky
    G. Brunetti
    C. Budtz-Jorgensen
    D. Burrows
    N. Butler
    S. Campana
    E. Caroli
    M. Ceballos
    F. Christensen
    E. Churazov
    A. Comastri
    L. Colasanti
    R. Cole
    R. Content
    A. Corsi
    E. Costantini
    P. Conconi
    G. Cusumano
    J. de Plaa
    A. De Rosa
    M. Del Santo
    S. Di Cosimo
    M. De Pasquale
    R. Doriese
    S. Ettori
    P. Evans
    Y. Ezoe
    L. Ferrari
    H. Finger
    T. Figueroa-Feliciano
    Experimental Astronomy, 2012, 34 : 519 - 549
  • [47] ORIGIN: Metal Creation and Evolution From The Cosmic Dawn
    Piro, L.
    den Herder, J. W.
    Ohashi, T.
    Hartmann, D. H.
    Kouveliotou, C.
    GAMMA RAY BURSTS 2010, 2011, 1358
  • [48] Cosmic Rays in the Inner Heliosphere: Insights from Observations, Theory and Models
    Potgieter, M. S.
    SPACE SCIENCE REVIEWS, 2013, 176 (1-4) : 165 - 176
  • [49] Cosmic Rays in the Inner Heliosphere: Insights from Observations, Theory and Models
    M. S. Potgieter
    Space Science Reviews, 2013, 176 : 165 - 176
  • [50] The cosmological evolution of compact radio sources from 102 MHz observations
    Artyukh, VS
    Tyulbashev, SA
    ASTRONOMICHESKII ZHURNAL, 1996, 73 (05): : 661 - 668