A penalized latent class model for ordinal data

被引:22
|
作者
Desantis, Stacia M. [1 ]
Houseman, E. Andres [1 ]
Coull, Brent A. [1 ]
Stemmer-Rachamimov, Anat [2 ]
Betensky, Rebecca A. [3 ]
机构
[1] Harvard Univ, Dept Biostat, Boston, MA 02115 USA
[2] Massachusetts Gen Hosp, Dept Pathol, Charlestown, MA 02129 USA
[3] Harvard Univ, Dept Biostat, Boston, MA 02115 USA
关键词
D O I
10.1093/biostatistics/kxm026
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Latent class models provide a useful framework for clustering observations based on several features. Application of latent class methodology to correlated, high-dimensional ordinal data poses many challenges. Unconstrained analyses may not result in an estimable model. Thus, information contained in ordinal variables may not be fully exploited by researchers. We develop a penalized latent class model to facilitate analysis of high-dimensional ordinal data. By stabilizing maximum likelihood estimation, we are able to fit an ordinal latent class model that would otherwise not be identifiable without application of strict constraints. We illustrate our methodology in a study of schwannoma, a peripheral nerve sheath tumor, that included 3 clinical subtypes and 23 ordinal histological measures.
引用
收藏
页码:249 / 262
页数:14
相关论文
共 50 条
  • [11] Partial Identification of Latent Correlations with Ordinal Data
    Moss, Jonas
    Gronneberg, Steffen
    [J]. PSYCHOMETRIKA, 2023, 88 (01) : 241 - 252
  • [12] Partial Identification of Latent Correlations with Ordinal Data
    Jonas Moss
    Steffen Grønneberg
    [J]. Psychometrika, 2023, 88 : 241 - 252
  • [13] Penalized Regression with Ordinal Predictors
    Gertheiss, Jan
    Tutz, Gerhard
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2009, 77 (03) : 345 - 365
  • [14] Bayesian nonparametric latent class model for longitudinal data
    Koo, Wonmo
    Kim, Heeyoung
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (11) : 3381 - 3395
  • [15] A latent class selection model for nonignorably missing data
    Jung, Hyekyung
    Schafer, Joseph L.
    Seo, Byungtae
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 802 - 812
  • [16] A latent class model applied to stated preference data
    Lo, HP
    Lam, W
    [J]. TRAVEL BEHAVIOUR RESEARCH: THE LEADING EDGE, 2001, : 425 - 438
  • [17] A Class of Multidimensional Latent Class IRT Models for Ordinal Polytomous Item Responses
    Bacci, Silvia
    Bartolucci, Francesco
    Gnaldi, Michela
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (04) : 787 - 800
  • [18] An Ordinal Latent Variable Model of Conflict Intensity
    Stoehr, Niklas
    Hennigen, Lucas Torroba
    Valvoda, Josef
    West, Robert
    Cotterell, Ryan
    Schein, Aaron
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 4817 - 4830
  • [19] Latent single-index models for ordinal data
    Chen, Zhi-Yong
    Wang, Hai-Bin
    [J]. STATISTICS AND COMPUTING, 2018, 28 (03) : 699 - 711
  • [20] Estimating Latent Variable Interactions with Binary and Ordinal Data
    Huang, Wenjing
    Bentler, Peter
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2009, 44 (06) : 852 - 852