A penalized latent class model for ordinal data

被引:22
|
作者
Desantis, Stacia M. [1 ]
Houseman, E. Andres [1 ]
Coull, Brent A. [1 ]
Stemmer-Rachamimov, Anat [2 ]
Betensky, Rebecca A. [3 ]
机构
[1] Harvard Univ, Dept Biostat, Boston, MA 02115 USA
[2] Massachusetts Gen Hosp, Dept Pathol, Charlestown, MA 02129 USA
[3] Harvard Univ, Dept Biostat, Boston, MA 02115 USA
关键词
D O I
10.1093/biostatistics/kxm026
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Latent class models provide a useful framework for clustering observations based on several features. Application of latent class methodology to correlated, high-dimensional ordinal data poses many challenges. Unconstrained analyses may not result in an estimable model. Thus, information contained in ordinal variables may not be fully exploited by researchers. We develop a penalized latent class model to facilitate analysis of high-dimensional ordinal data. By stabilizing maximum likelihood estimation, we are able to fit an ordinal latent class model that would otherwise not be identifiable without application of strict constraints. We illustrate our methodology in a study of schwannoma, a peripheral nerve sheath tumor, that included 3 clinical subtypes and 23 ordinal histological measures.
引用
收藏
页码:249 / 262
页数:14
相关论文
共 50 条
  • [1] Feature-specific penalized latent class analysis for genomic data
    Houseman, E. Andres
    Coull, Brent A.
    Betensky, Rebecca A.
    [J]. BIOMETRICS, 2006, 62 (04) : 1062 - 1070
  • [2] A LATENT CLASS MODEL FOR RATING DATA
    ROST, J
    [J]. PSYCHOMETRIKA, 1985, 50 (01) : 37 - 49
  • [3] Bayesian penalized cumulative logit model for high-dimensional data with an ordinal response
    Zhang, Yiran
    Archer, Kellie J.
    [J]. STATISTICS IN MEDICINE, 2021, 40 (06) : 1453 - 1481
  • [4] The augmented latent class model: Incorporating additional heterogeneity in the latent class model for panel data
    Varki, S
    Chintagunta, PK
    [J]. JOURNAL OF MARKETING RESEARCH, 2004, 41 (02) : 226 - 233
  • [5] Comparing latent inequality with ordinal data
    Kaplan, David M.
    Zhao, Wei
    [J]. ECONOMETRICS JOURNAL, 2023, 26 (02): : 189 - 214
  • [6] A penalized estimation for the Cox model with ordinal multinomial covariates
    Yue, Chao
    Xuejun, Ma
    Yaguang, Li
    Lei, Huang
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (06) : 1194 - 1223
  • [7] A latent variable model for ordinal variables
    Moustaki, I
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2000, 24 (03) : 211 - 223
  • [8] Latent class model with two latent variables for analysis of count data
    Yamaguchi, Kazunori
    Sakurai, Naoko
    Watanabe, Michiko
    [J]. COMPSTAT 2006: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2006, : 395 - +
  • [9] On nonparametric estimation of the latent distribution for ordinal data
    Ghosh, Sujit K.
    Burns, Christopher B.
    Prager, Daniel L.
    Zhang, Li
    Hui, Glenn
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 119 : 86 - 98
  • [10] LATENT VARIABLE MODELS FOR CLUSTERED ORDINAL DATA
    QU, YS
    PIEDMONTE, MR
    MEDENDORP, SV
    [J]. BIOMETRICS, 1995, 51 (01) : 268 - 275