The Hypoxic Proteome and Metabolome of Barley (Hordeum vulgare L.) with and without Phytoglobin Priming

被引:13
|
作者
Andrzejczak, Olga A. [1 ]
Havelund, Jesper F. [2 ,3 ]
Wang, Wei-Qing [2 ,3 ,6 ]
Kovalchuk, Sergey [2 ,3 ,7 ]
Hagensen, Christina E. [2 ,3 ]
Hasler-Sheetal, Harald [2 ,3 ,4 ]
Jensen, Ole N. [2 ,3 ]
Rogowska-Wrzesinska, Adelina [2 ,3 ]
Moller, Ian Max [5 ]
Hebelstrup, Kim H. [1 ]
机构
[1] Aarhus Univ, Dept Agroecol, Sect Crop Genet & Biotechnol, Forsogsvej 1, DK-4200 Slagelse, Denmark
[2] Univ Southern Denmark, Dept Biochem & Mol Biol, Campusvej 55, DK-5230 Odense M, Denmark
[3] Univ Southern Denmark, VILLUM Ctr Bioanalyt Sci, Campusvej 55, DK-5230 Odense M, Denmark
[4] Univ Southern Denmark, Dept Biol, Nordcee, Campusvej 55, DK-5230 Odense M, Denmark
[5] Aarhus Univ, Dept Mol Biol & Genet, Forsogsvej 1, DK-4200 Slagelse, Denmark
[6] Chinese Acad Sci, Inst Bot, Key Lab Plant Mol Physiol, Beijing 100093, Peoples R China
[7] RAS, Lab Bioinformat Methods Combinatorial Chem & Biol, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow 117997, Russia
关键词
ethylene; anaerobiosis; hemoglobin; histones; N-end rule; stress priming; NITRIC-OXIDE; OXIDATIVE STRESS; LOW-OXYGEN; MASS-SPECTROMETRY; ARABIDOPSIS; PLANTS; ROOTS; NO; BIOSYNTHESIS; RESPONSES;
D O I
10.3390/ijms21041546
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Overexpression of phytoglobins (formerly plant hemoglobins) increases the survival rate of plant tissues under hypoxia stress by the following two known mechanisms: (1) scavenging of nitric oxide (NO) in the phytoglobin/NO cycle and (2) mimicking ethylene priming to hypoxia when NO scavenging activates transcription factors that are regulated by levels of NO and O-2 in the N-end rule pathway. To map the cellular and metabolic effects of hypoxia in barley (Hordeum vulgare L., cv. Golden Promise), with or without priming to hypoxia, we studied the proteome and metabolome of wild type (WT) and hemoglobin overexpressing (HO) plants in normoxia and after 24 h hypoxia (WT24, HO24). The WT plants were more susceptible to hypoxia than HO plants. The chlorophyll a + b content was lowered by 50% and biomass by 30% in WT24 compared to WT, while HO plants were unaffected. We observed an increase in ROS production during hypoxia treatment in WT seedlings that was not observed in HO seedlings. We identified and quantified 9694 proteins out of which 1107 changed significantly in abundance. Many proteins, such as ion transporters, Ca2+-signal transduction, and proteins related to protein degradation were downregulated in HO plants during hypoxia, but not in WT plants. Changes in the levels of histones indicates that chromatin restructuring plays a role in the priming of hypoxia. We also identified and quantified 1470 metabolites, of which the abundance of >500 changed significantly. In summary the data confirm known mechanisms of hypoxia priming by ethylene priming and N-end rule activation; however, the data also indicate the existence of other mechanisms for hypoxia priming in plants.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Advanced backcross QTL analysis in barley (Hordeum vulgare L.)
    K. Pillen
    A. Zacharias
    J. Léon
    [J]. Theoretical and Applied Genetics, 2003, 107 : 340 - 352
  • [32] Advanced backcross QTL analysis in barley (Hordeum vulgare L.)
    Pillen, K
    Zacharias, A
    Léon, J
    [J]. THEORETICAL AND APPLIED GENETICS, 2003, 107 (02) : 340 - 352
  • [33] Comparison of stability statistics for yield in barley (Hordeum vulgare L.)
    Mut, Zeki
    Gulumser, Ali
    Sirat, Abdulveli
    [J]. AFRICAN JOURNAL OF BIOTECHNOLOGY, 2010, 9 (11): : 1610 - 1618
  • [34] THE EFFECT OF HEAVY METALS ON SPRING BARLEY (Hordeum vulgare L.)
    Juknys, Romualdas
    Racaite, Milda
    Vitkauskaite, Giedre
    Vencloviene, Jone
    [J]. ZEMDIRBYSTE-AGRICULTURE, 2009, 96 (02) : 111 - 124
  • [35] Morphological and genetic diversity of barley (Hordeum vulgare L.) germplasm
    Ali, Ayaz
    Ullah, Rahman
    Anwar, Saeed
    Ali, Ahmad
    Ullah, Zahid
    Sher, Hassan
    Iqbal, Javed
    Abbasi, Banzeer Ahsan
    Al Farraj, Dunia A.
    Elshikh, Mohamed S.
    Qasim, Muhammad
    Iqbal, Rashid
    [J]. GENETIC RESOURCES AND CROP EVOLUTION, 2024,
  • [36] SIRE1 retrotransposons in barley (Hordeum vulgare L.)
    B. Cakmak
    S. Marakli
    N. Gozukirmizi
    [J]. Russian Journal of Genetics, 2015, 51 : 661 - 672
  • [37] Apoplast Acidification in Growing Barley (Hordeum vulgare L.) Leaves
    Tamás Visnovitz
    Mostefa Touati
    Anthony J. Miller
    Wieland Fricke
    [J]. Journal of Plant Growth Regulation, 2013, 32 : 131 - 139
  • [38] Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.)
    I. Karsai
    K. Mészáros
    Z. Bedő
    P. M. Hayes
    A. Pan
    F. Chen
    [J]. Acta Biologica Hungarica, 1997, 48 (1): : 67 - 76
  • [39] Association mapping of salt tolerance in barley (Hordeum vulgare L.)
    Nguyen Viet Long
    Oene Dolstra
    Marcos Malosetti
    Benjamin Kilian
    Andreas Graner
    Richard G. F. Visser
    C. Gerard van der Linden
    [J]. Theoretical and Applied Genetics, 2013, 126 : 2335 - 2351
  • [40] Genetic diversity of Omani barley (Hordeum vulgare L.) germplasm
    Al Lawati, Ali H.
    Nadaf, Saleem K.
    AlSaady, Nadiya A.
    Al Hinai, Saleh A.
    Almamari, Almandhar R.
    Al Maawali, Abdulaziz A.
    [J]. OPEN AGRICULTURE, 2021, 6 (01): : 628 - 639