FEDBS: Learning on Non-IID Data in Federated Learning using Batch Normalization

被引:8
|
作者
Idrissi, Meryem Janati [1 ]
Berrada, Ismail [1 ]
Noubir, Guevara [2 ]
机构
[1] Mohammed VI Polytech Univ, Sccs, Benguerir, Morocco
[2] Northeastern Univ, Boston, MA 02115 USA
关键词
Federated learning; Batch Normalization; Non-HD data;
D O I
10.1109/ICTAI52525.2021.00138
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) is a well-established distributed machine-learning paradigm that enables training global models on massively distributed data i.e., training on multiowner data. However, classic FL algorithms, such as Federated Averaging (FedAvg), generally underperform when faced with Non-Independent and Identically Distributed (Non-IID) data. Such a problem is aggravated for some hyperparametric methods such as optimizers, regularization, and normalization techniques. In this paper, we introduce FedBS, a new efficient strategy to handle global models having batch normalization layers, in the presence of Non-HD data. FedBS modifies FedAvg by introducing a new aggregation rule at the server-side, while also retaining full compatibility with Batch Normalization (BN). Through our evaluations, we have empirically proven that FedBS outperforms both classical FedAvg, as well as the state-of-the-art FedProx through a comprehensive set of experiments conducted on Cifar10, Mnist, and Fashion-Mnist datasets under various Non-HD data settings. Furthermore, we observed that in some cases, FedBS can be 2x faster than other FL approaches, coupled with higher testing accuracy.
引用
下载
收藏
页码:861 / 867
页数:7
相关论文
共 50 条
  • [41] Adaptive Federated Learning on Non-IID Data With Resource Constraint
    Zhang, Jie
    Guo, Song
    Qu, Zhihao
    Zeng, Deze
    Zhan, Yufeng
    Liu, Qifeng
    Akerkar, Rajendra
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (07) : 1655 - 1667
  • [42] FedAP: Adaptive Personalization in Federated Learning for Non-IID Data
    Yeganeh, Yousef
    Farshad, Azade
    Boschmann, Johann
    Gaus, Richard
    Frantzen, Maximilian
    Navab, Nassir
    DISTRIBUTED, COLLABORATIVE, AND FEDERATED LEARNING, AND AFFORDABLE AI AND HEALTHCARE FOR RESOURCE DIVERSE GLOBAL HEALTH, DECAF 2022, FAIR 2022, 2022, 13573 : 17 - 27
  • [43] Hierarchical Federated Learning with Adaptive Clustering on Non-IID Data
    Tian, Yuqing
    Zhang, Zhaoyang
    Yang, Zhaohui
    Jin, Richeng
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 627 - 632
  • [44] A Comprehensive Study on Personalized Federated Learning with Non-IID Data
    Yu, Menghang
    Zheng, Zhenzhe
    Li, Qinya
    Wu, Fan
    Zheng, Jiaqi
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 40 - 49
  • [45] Federated Learning on Non-IID Data Silos: An Experimental Study
    Li, Qinbin
    Diao, Yiqun
    Chen, Quan
    He, Bing Sheng
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 965 - 978
  • [46] Gradient Calibration for Non-IID Federated Learning
    Li, Jiachen
    Zhang, Yuchao
    Li, Yiping
    Gong, Xiangyang
    Wang, Wendong
    PROCEEDINGS OF THE 2023 THE 2ND ACM WORKSHOP ON DATA PRIVACY AND FEDERATED LEARNING TECHNOLOGIES FOR MOBILE EDGE NETWORK, FEDEDGE 2023, 2023, : 119 - 124
  • [47] Training Keyword Spotting Models on Non-IID Data with Federated Learning
    Hard, Andrew
    Partridge, Kurt
    Nguyen, Cameron
    Subrahmanya, Niranjan
    Shah, Aishanee
    Zhu, Pai
    Moreno, Ignacio Lopez
    Mathews, Rajiv
    INTERSPEECH 2020, 2020, : 4343 - 4347
  • [48] Personalized Federated Learning over non-IID Data for Indoor Localization
    Wu, Peng
    Imbiriba, Tales
    Park, Junha
    Kim, Sunwoo
    Closas, Pau
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 421 - 425
  • [49] FedNSE: Optimal Node Selection for Federated Learning with Non-IID Data
    Bansal, Sourav
    Bansal, Manav
    Verma, Rohit
    Shorey, Rajeev
    Saran, Huzur
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,
  • [50] HFML: heterogeneous hierarchical federated mutual learning on non-IID data
    Li, Yang
    Li, Jie
    Li, Kan
    ANNALS OF OPERATIONS RESEARCH, 2023,