Wave function multifractality and dephasing at metal-insulator and quantum Hall transitions

被引:39
|
作者
Burmistrov, I. S. [1 ,2 ]
Bera, S. [3 ,4 ]
Evers, F. [3 ,4 ]
Gornyi, I. V. [3 ,5 ]
Mirlin, A. D. [3 ,4 ,6 ]
机构
[1] LD Landau Theoret Phys Inst, Moscow 117940, Russia
[2] Moscow Inst Phys & Technol, Dept Theoret Phys, Moscow 141700, Russia
[3] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[4] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[5] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[6] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia
关键词
Anderson transitions; Quantum Hall effect; Dephasing; Multifractality; NONLINEAR SIGMA-MODEL; CRITICAL-BEHAVIOR; ANOMALOUS DIMENSIONS; PARTICIPATION RATIO; BETA-FUNCTION; SI-P; CONDUCTIVITY; DELOCALIZATION; LOCALIZATION; TEMPERATURE;
D O I
10.1016/j.aop.2011.01.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the critical behavior of the dephasing rate induced by short-range electron-electron interaction near an Anderson transition of metal-insulator or quantum Hall type. The corresponding exponent characterizes the scaling of the transition width with temperature. Assuming no spin degeneracy, the critical behavior can be studied by performing the scaling analysis in the vicinity of the non-interacting fixed point, since the latter is stable with respect to the interaction. We combine an analytical treatment (that includes the identification of operators responsible for dephasing in the formalism of the non-linear sigma-model and the corresponding renormalization-group analysis in 2 + epsilon dimensions) with numerical simulations on the Chalker-Coddington network model of the quantum Hall transition. Finally, we discuss the current understanding of the Coulomb interaction case and the available experimental data. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1457 / 1478
页数:22
相关论文
共 50 条
  • [31] Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus
    Zheng, Binjie
    Wang, Junzhuan
    Wang, Qianghua
    Su, Xin
    Huang, Tianye
    Li, Songlin
    Wang, Fengqiu
    Shi, Yi
    Wang, Xiaomu
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [32] METAL-INSULATOR TRANSITIONS AND POSSIBLE QUANTUM EFFECTS IN SUPPORTED NICKEL MONOLAYERS
    BURDETT, JK
    MORTARA, AK
    CHEMISTRY OF MATERIALS, 1995, 7 (10) : 1922 - 1931
  • [33] THERMODYNAMIC THEORY OF METAL-INSULATOR TRANSITIONS
    SPALEK, J
    HONIG, JM
    ACQUARONE, M
    DATTA, A
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 54-7 : 1047 - 1048
  • [34] ROLE OF HYBRIDIZATION IN METAL-INSULATOR TRANSITIONS
    AVIGNON, M
    GHATAK, SK
    SOLID STATE COMMUNICATIONS, 1975, 16 (10-1) : 1243 - 1246
  • [35] ROLE OF HYBRIDIZATION IN METAL-INSULATOR TRANSITIONS
    AVIGNON, M
    COEY, JMD
    GHATAK, SK
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (03): : 383 - 383
  • [36] Metal-insulator transitions in layered ruthenates
    Maeno, Y
    Nakatsuji, S
    Ikeda, S
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 63 (1-2): : 70 - 75
  • [37] METAL-INSULATOR TRANSITIONS The problem with spins
    Jerome, Denis
    NATURE PHYSICS, 2009, 5 (12) : 864 - 865
  • [38] CONTINUOUS AND DISCONTINUOUS METAL-INSULATOR TRANSITIONS
    MOTT, NF
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1978, 37 (03): : 377 - 386
  • [39] FALICOVS MODEL FOR METAL-INSULATOR TRANSITIONS
    BRINGER, A
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1975, 21 (01): : 21 - 25
  • [40] New Spin on Metal-Insulator Transitions
    Pustogow, Andrej
    CRYSTALS, 2023, 13 (01)