Wave function multifractality and dephasing at metal-insulator and quantum Hall transitions

被引:39
|
作者
Burmistrov, I. S. [1 ,2 ]
Bera, S. [3 ,4 ]
Evers, F. [3 ,4 ]
Gornyi, I. V. [3 ,5 ]
Mirlin, A. D. [3 ,4 ,6 ]
机构
[1] LD Landau Theoret Phys Inst, Moscow 117940, Russia
[2] Moscow Inst Phys & Technol, Dept Theoret Phys, Moscow 141700, Russia
[3] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[4] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[5] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[6] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia
关键词
Anderson transitions; Quantum Hall effect; Dephasing; Multifractality; NONLINEAR SIGMA-MODEL; CRITICAL-BEHAVIOR; ANOMALOUS DIMENSIONS; PARTICIPATION RATIO; BETA-FUNCTION; SI-P; CONDUCTIVITY; DELOCALIZATION; LOCALIZATION; TEMPERATURE;
D O I
10.1016/j.aop.2011.01.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the critical behavior of the dephasing rate induced by short-range electron-electron interaction near an Anderson transition of metal-insulator or quantum Hall type. The corresponding exponent characterizes the scaling of the transition width with temperature. Assuming no spin degeneracy, the critical behavior can be studied by performing the scaling analysis in the vicinity of the non-interacting fixed point, since the latter is stable with respect to the interaction. We combine an analytical treatment (that includes the identification of operators responsible for dephasing in the formalism of the non-linear sigma-model and the corresponding renormalization-group analysis in 2 + epsilon dimensions) with numerical simulations on the Chalker-Coddington network model of the quantum Hall transition. Finally, we discuss the current understanding of the Coulomb interaction case and the available experimental data. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1457 / 1478
页数:22
相关论文
共 50 条
  • [1] Deconfined metal-insulator transitions in quantum Hall bilayers
    Zou, Liujun
    Chowdhury, Debanjan
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [2] METAL-INSULATOR TRANSITIONS BETWEEN QUANTUM HALL PLATEAUS
    ZHAO, HL
    FENG, SC
    PHYSICA A, 1993, 200 (1-4): : 443 - 451
  • [3] Dephasing and the metal-insulator transition
    Shi, JR
    Xie, XC
    PHYSICAL REVIEW B, 2001, 63 (04)
  • [4] Diffusion and multifractality at the metal-insulator transition
    Huckestein, B
    Klesse, R
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (05): : 1181 - 1187
  • [5] Marginal quantum criticality of metal-insulator transitions
    Misawa, Takahiro
    Yamaji, Youhei
    Imada, Masatoshi
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 925 - 927
  • [6] Hall Resistivity and Dephasing in the Quantum Hall Insulator
    Department of Physics, University of California, Los Angeles, CA 90095, United States
    不详
    不详
    Phys Rev Lett, 6 (1253-1256):
  • [7] Hall resistivity and dephasing in the quantum Hall insulator
    Pryadko, LP
    Auerbach, A
    PHYSICAL REVIEW LETTERS, 1999, 82 (06) : 1253 - 1256
  • [8] Multifractality and Scaling at the Quantum Hall transitions
    Evers, F.
    Mildenberger, A.
    Mirlin, A. D.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72
  • [9] Hidden scaling in the quantum Hall metal-insulator transition
    Moriconi, L
    Pereira, ALC
    Schulz, PA
    PHYSICAL REVIEW B, 2004, 69 (04)
  • [10] METAL-INSULATOR TRANSITIONS
    MOTT, NF
    CONTEMPORARY PHYSICS, 1973, 14 (05) : 401 - 413