A Visual Navigation System for Autonomous Flight of Micro Air Vehicles

被引:15
|
作者
Kendoul, Farid [1 ]
Nonami, Kenzo [1 ]
机构
[1] Chiba Univ, Robot & Syst Control Lab, Dept Elect & Mech Engn, Chiba 2638522, Japan
关键词
VISION; HELICOPTER; ODOMETRY;
D O I
10.1109/IROS.2009.5354730
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many applications of unmanned aerial vehicles (UAVs) require the capability to navigate to some goal and to perform precise and safe landing. In this paper, we present a visual navigation system as an alternative pose estimation method for environments and situations in which GPS is unavailable. The developed visual odometer is an incremental procedure that estimates the vehicle's ego-motion by extracting and tracking visual features, using an onboard camera. For more robustness and accuracy, the visual estimates are fused with measurements from an Inertial Measurement Unit (IMU) and a Pressure Sensor Altimeter (PSA) in order to provide at:curate estimates of the vehicle's height, velocity and position relative to a given location. These estimates are then exploited by a nonlinear hierarchical controller for achieving various navigation tasks such as take-off, landing, hovering, target tracking, etc. In addition to the odometer description, the paper presents validation results from autonomous flights using a small quadrotor UAV.
引用
收藏
页码:3888 / 3893
页数:6
相关论文
共 50 条
  • [1] A Versatile Visual Navigation System for Autonomous Vehicles
    Majer, Filip
    Halodova, Lucie
    Vintr, Tomas
    Dlouhy, Martin
    Merenda, Lukas
    Fentanes, Jaime Pulido
    Portugal, David
    Couceiro, Micael
    Krajnik, Tomas
    [J]. MODELLING AND SIMULATION FOR AUTONOMOUS SYSTEMS (MESAS 2018), 2019, 11472 : 90 - 110
  • [2] A VISUAL NAVIGATION SYSTEM FOR AUTONOMOUS LAND VEHICLES
    WAXMAN, AM
    LEMOIGNE, JJ
    DAVIS, LS
    SRINIVASAN, B
    KUSHNER, TR
    LIANG, E
    SIDDALINGAIAH, T
    [J]. IEEE JOURNAL OF ROBOTICS AND AUTOMATION, 1987, 3 (02): : 124 - 141
  • [3] Environment interpretation for autonomous indoor navigation of micro air vehicles
    Tripathi, Abhishek Kumar
    Swarup, Shanti
    [J]. 2014 IEEE STUDENTS' TECHNOLOGY SYMPOSIUM (IEEE TECHSYM), 2014, : 87 - 92
  • [4] Relative navigation of autonomous GPS-degraded micro air vehicles
    Wheeler, David O.
    Koch, Daniel P.
    Jackson, James S.
    Ellingson, Gary J.
    Nyholm, Paul W.
    McLain, Timothy W.
    Beard, Randal W.
    [J]. AUTONOMOUS ROBOTS, 2020, 44 (05) : 811 - 830
  • [5] Relative navigation of autonomous GPS-degraded micro air vehicles
    David O. Wheeler
    Daniel P. Koch
    James S. Jackson
    Gary J. Ellingson
    Paul W. Nyholm
    Timothy W. McLain
    Randal W. Beard
    [J]. Autonomous Robots, 2020, 44 : 811 - 830
  • [6] Multi-camera visual SLAM for autonomous navigation of micro aerial vehicles
    Yang, Shaowu
    Scherer, Sebastian A.
    Yi, Xiaodong
    Zell, Andreas
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 93 : 116 - 134
  • [7] Development and Flight Testing of a Turbulence Mitigation System for Micro Air Vehicles
    Mohamed, A.
    Abdulrahim, M.
    Watkins, S.
    Clothier, R.
    [J]. JOURNAL OF FIELD ROBOTICS, 2016, 33 (05) : 639 - 660
  • [8] Multilayered Mapping and Navigation for Autonomous Micro Aerial Vehicles
    Droeschel, David
    Nieuwenhuisen, Matthias
    Beul, Marius
    Holz, Dirk
    Stueckler, Joerg
    Behnke, Sven
    [J]. JOURNAL OF FIELD ROBOTICS, 2016, 33 (04) : 451 - 475
  • [9] Research on the image navigation of Micro Air Vehicles
    Bao, GQ
    Zhou, ZY
    Xiong, SS
    [J]. ISTM/2003: 5TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, CONFERENCE PROCEEDINGS, 2003, : 5040 - 5045
  • [10] Mono visual odometry for Autonomous Underwater Vehicles navigation
    Zacchini, Leonardo
    Bucci, Alessandro
    Franchi, Matteo
    Costanzi, Riccardo
    Ridolfi, Alessandro
    [J]. OCEANS 2019 - MARSEILLE, 2019,