Influence of external on silicon electrodes in lithium-ion cells

被引:19
|
作者
Goettlinger, Mara [1 ]
Daubinger, Philip [1 ]
Stracke, Werner [1 ]
Hartmann, Sarah [1 ]
Giffin, Guinevere A. [1 ,2 ]
机构
[1] Fraunhofer Inst Silicate Res ISC, Neunerpl 2, D-97082 Wurzburg, Germany
[2] Julius Maximilians Univ Wurzburg, Fac Chem & Pharm, Chem Technol Mat Synth, Rontgenring 11, D-97070 Wurzburg, Germany
关键词
Lithium-ion battery; Silicon; Pressure; Bracing; Lithium reservoir; NEGATIVE ELECTRODES; ANODES; COMPOSITES; BATTERIES; EXPANSION; INSERTION; PRESSURE; BEHAVIOR;
D O I
10.1016/j.electacta.2022.140354
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The influence of external pressure on lithium-ion cells containing a silicon anode is investigated. The performance of pouch-type full cells under rigid compression is compared to unconstrained cells, where the electrode stack is allowed to swell during cycling. The negative electrode contains only silicon as active material, while prelithiated lithium titanium oxide (LTO) is used as the positive electrode. The results show that the main failure mechanism in such cells is a continuous irreversible consumption of lithium ions, likely due to repeated solid electrolyte interphase breakage and reformation. At high pressures, the lithium depletion has a larger influence than at lower pressures. This effect is examined by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) as well as dilation measurements of flexibly-constrained cells and can be traced back to an increase of the ionic pore resistance being more pronounced under high pressure. A new approach is used to compensate the lithium loss, i.e. internal relithiation of the LTO electrode via a lithium reservoir. This not only proves the theory of irreversible lithium consumption being the main challenge in these cells, but also enables cycling for 1000 cycles at 1200 mAh g(Si)(-1) without capacity fading.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Unveiling the Critical Role of Polymeric Binders for Silicon Negative Electrodes in Lithium-Ion Full Cells
    Xu, Jiagang
    Zhang, Long
    Wang, Yikai
    Chen, Tao
    Al-Shroofy, Mohanad
    Cheng, Yang-Tse
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) : 3562 - 3569
  • [12] Using Lithium-ion Differential Thermal Analysis to Probe Tortuosity of Negative Electrodes in Lithium-Ion Cells
    Bauer, Michael K. G.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (02)
  • [13] Performance of Lithium-Ion Pouch Cells with Silicon Composite Anodes under External Mechanical Pressure
    Zhang, Zhiyuan
    Li, Xueyan
    Gong, Lili
    Li, Yang
    Qin, Jiaqian
    Tan, Peng
    ENERGY & FUELS, 2023, 37 (13) : 9713 - 9721
  • [14] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Tao Li
    Juan-Yu Yang
    Shi-Gang Lu
    Han Wang
    Hai-Yang Ding
    Rare Metals, 2013, 32 (03) : 299 - 304
  • [15] Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries
    Pharr, Matt
    Zhao, Kejie
    Wang, Xinwei
    Suo, Zhigang
    Vlassak, Joost J.
    NANO LETTERS, 2012, 12 (09) : 5039 - 5047
  • [16] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Tao Li
    Juan-Yu Yang
    Shi-Gang Lu
    Han Wang
    Hai-Yang Ding
    Rare Metals, 2013, 32 : 299 - 304
  • [17] High Capacity Silicon Electrodes with Nafion as Binders for Lithium-Ion Batteries
    Xu, Jiagang
    Zhang, Qinglin
    Cheng, Yang-Tse
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (03) : A401 - A405
  • [18] Silicon nanopowder as active material for hybrid electrodes of lithium-ion batteries
    S. P. Kuksenko
    I. O. Konovalenko
    Russian Journal of Applied Chemistry, 2011, 84 : 1179 - 1187
  • [19] Nanocrystalline silicon carbide thin film electrodes for lithium-ion batteries
    Zhang, Hongtao
    Xu, Hui
    SOLID STATE IONICS, 2014, 263 : 23 - 26
  • [20] Magnetron Sputtering Silicon Thin Film Electrodes for Lithium-Ion Batteries
    Evshchik, E.
    Novikov, D.
    Levchenko, A.
    Nefedkin, S.
    Shikhovtseva, A. V.
    Bushkova, O. V.
    Dobrovolsky, Yu. A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (03): : 2860 - 2874