Existence results for the static contact problem with Coulomb friction

被引:73
|
作者
Eck, C
Jarusek, J
机构
[1] Univ Stuttgart, Inst Math A, D-70550 Stuttgart, Germany
[2] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
来源
关键词
D O I
10.1142/S0218202598000196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of solutions to the static contact problem with Coulomb friction, provided that the coefficient of friction is small enough. The proof employs the penalty method and a certain smoothing procedure for the friction functional. Using optimal trace estimates for the solutions of the Lame equations, we calculate an upper bound for the admissible coefficient of friction which is greater than the corresponding bounds proposed by Necas, Jarusek and Haslinger (1980) and by Jarusek (1983).
引用
收藏
页码:445 / 468
页数:24
相关论文
共 50 条
  • [41] A review of some existence results for quasistatic contact problems with friction
    Andersson, LE
    [J]. PROCEEDINGS OF THE THE FIRST INTERNATIONAL SYMPOSIUM ON IMPACT AND FRICTION OF SOLIDS, STRUCTURES AND INTELLIGENT MACHINES: IN MEMORIAM P. D. PANAGIOTOPOULOS (1950-1998), 2000, 14 : 175 - 178
  • [42] Existence results for unilateral quasistatic contact problems with friction and adhesion
    Cocu, M
    Rocca, R
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (05): : 981 - 1001
  • [43] ON SOME EXISTENCE AND UNIQUENESS RESULTS IN CONTACT PROBLEMS WITH NONLOCAL FRICTION
    DEMKOWICZ, L
    ODEN, JT
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) : 1075 - 1093
  • [44] Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions
    Jarusek, J
    Eck, C
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (01): : 11 - 34
  • [45] EXISTENCE AND CONVERGENCE RESULTS FOR A NONLINEAR THERMOELASTIC CONTACT PROBLEM
    Liu, Jinjie
    Migorski, Stanislaw
    Yang, Xinmin
    Zeng, Shengda
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (05): : 647 - 664
  • [46] COULOMB FRICTION IN ANGULAR CONTACT BEARINGS
    HARRIS, TA
    [J]. INDUSTRIAL LUBRICATION AND TRIBOLOGY, 1970, 22 (10) : 287 - +
  • [47] EXISTENCE AND UNIQUENESS OF SOLUTIONS TO DYNAMICAL UNILATERAL CONTACT PROBLEMS WITH COULOMB FRICTION: THE CASE OF A COLLECTION OF POINTS
    Charles, Alexandre
    Ballard, Patrick
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01): : 1 - 25
  • [48] An Identification Method for Static and Coulomb Friction Coefficients
    Borsotto, Bastien
    Godoy, Emmanuel
    Beauvois, Dominique
    Devaud, Emmanuel
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2009, 7 (02) : 305 - 310
  • [49] An identification method for static and coulomb friction coefficients
    Bastien Borsotto
    Emmanuel Godoy
    Dominique Beauvois
    Emmanuel Devaud
    [J]. International Journal of Control, Automation and Systems, 2009, 7 : 305 - 310
  • [50] Contribution to the brachistochrone problem with Coulomb friction
    Slaviša Šalinić
    [J]. Acta Mechanica, 2009, 208 : 97 - 115