Existence results for the static contact problem with Coulomb friction

被引:73
|
作者
Eck, C
Jarusek, J
机构
[1] Univ Stuttgart, Inst Math A, D-70550 Stuttgart, Germany
[2] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
来源
关键词
D O I
10.1142/S0218202598000196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of solutions to the static contact problem with Coulomb friction, provided that the coefficient of friction is small enough. The proof employs the penalty method and a certain smoothing procedure for the friction functional. Using optimal trace estimates for the solutions of the Lame equations, we calculate an upper bound for the admissible coefficient of friction which is greater than the corresponding bounds proposed by Necas, Jarusek and Haslinger (1980) and by Jarusek (1983).
引用
收藏
页码:445 / 468
页数:24
相关论文
共 50 条
  • [1] Existence results for the semicoercive static contact problem with Coulomb friction
    Eck, C
    Jarusek, J
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (06) : 961 - 976
  • [2] Existence results for quasistatic contact problems with Coulomb friction
    Andersson, LE
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 42 (02): : 169 - 202
  • [3] Existence Results for Quasistatic Contact Problems with Coulomb Friction
    L. -E. Andersson
    [J]. Applied Mathematics & Optimization, 2000, 42 : 169 - 202
  • [4] Nitsche method for contact with Coulomb friction: Existence results for the static and dynamic finite element formulations
    Chouly, Franz
    Hild, Patrick
    Lleras, Vanessa
    Renard, Yves
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416
  • [5] PATH-FOLLOWING THE STATIC CONTACT PROBLEM WITH COULOMB FRICTION
    Haslinger, J.
    Janovsky, V.
    Kucera, R.
    [J]. APPLICATIONS OF MATHEMATICS 2013, 2013, : 104 - 116
  • [6] Finite element analysis of a static contact problem with Coulomb friction
    Hlaváček I.
    [J]. Applications of Mathematics, 2000, 45 (05) : 357 - 379
  • [7] Existence of solutions to a thermo-viscoelastic contact problem with Coulomb friction
    Eck, C
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (10): : 1491 - 1511
  • [8] Existence and uniqueness for dynamical unilateral contact with Coulomb friction: A model problem
    Ballard, P
    Basseville, S
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (01): : 59 - 77
  • [9] Existence results for the time-incremental elastic contact problem with Coulomb friction in 2D
    Ballard, Patrick
    Iurlano, Flaviana
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024,
  • [10] A Residual Type Error Estimate for the Static Coulomb Friction Problem with Unilateral Contact
    Hild, Patrick
    Lleras, Vanessa
    [J]. RECENT ADVANCES IN CONTACT MECHANICS, 2013, 56 : 85 - 100