Surface shape reconstruction from phaseless scattered acoustic data using a random forest algorithm

被引:2
|
作者
Johnson, Michael-David [1 ]
Krynkin, Anton [1 ]
Dolcetti, Giulio [2 ]
Alkmim, Mansour [3 ,4 ]
Cuenca, Jacques [3 ]
De Ryck, Laurent [3 ]
机构
[1] Univ Sheffield, Dept Mech Engn, Sheffield, England
[2] Univ Sheffield, Dept Civil & Struct Engn, Sheffield, England
[3] Siemens Digital Ind Software, Interleuvenlaan 68, B-3001 Leuven, Belgium
[4] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300 B, B-3001 Leuven, Belgium
来源
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
DOPPLER SPECTRA; ROUGH-SURFACE; ULTRASOUND;
D O I
10.1121/10.0013506
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Recent studies have demonstrated that acoustic waves can be used to reconstruct the roughness profile of a rigid scattering surface. In particular, the use of multiple microphones placed above a rough surface as well as an analytical model based on the linearised Kirchhoff integral equations provides a sufficient base for the inversion algorithm to estimate surface geometrical properties. Prone to fail in the presence of high noise and measurement uncertainties, the analytical approach may not always be suitable in analysing measured scattered acoustic pressure. With the aim to improve the robustness of the surface reconstruction algorithms, here it is proposed to use a data-driven approach through the application of a random forest regression algorithm to reconstruct specific parameters of one-dimensional sinusoidal surfaces from airborne acoustic phase-removed pressure data. The data for the training set are synthetically generated through the application of the Kirchhoff integral in predicting scattered sound, and they are further verified with data produced from laboratory measurements. The surface parameters from the measurement sample were found to be recovered accurately for various receiver combinations and with a wide range of noise levels ranging from 0.1% to 30% of the average scattered acoustical pressure amplitude. (C) 2022 Author(s).
引用
收藏
页码:1045 / 1057
页数:13
相关论文
共 50 条
  • [21] Estimating disease prevalence from drug utilization data using the Random Forest algorithm
    Slobbe, Laurentius C. J.
    Fussenich, Koen
    Wong, Albert
    Boshuizen, Hendriek C.
    Nielen, Markus M. J.
    Polder, Johan J.
    Feenstra, Talitha L.
    van Oers, Hans A. M.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2019, 29 (04): : 615 - 621
  • [22] RECONSTRUCTION OF ELASTIC OBSTACLES FROM THE FAR-FIELD DATA OF SCATTERED ACOUSTIC WAVES
    Elschner, J.
    Hsiao, G. C.
    Rathsfeld, A.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2011, 53 : 63 - 97
  • [23] Regeneration of an underlying radio image from surface fragments using phaseless data
    Kostenko, PY
    Zrodnikov, AV
    Manoilo, SV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1999, 42 (5-6): : 58 - 62
  • [24] 3D surface reconstruction from scattered data using moving least square method
    Ahn, SJ
    Yoo, J
    Lee, BG
    Lee, JJ
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2005, PROCEEDINGS, 2005, 3617 : 719 - 726
  • [25] Data integration and network reconstruction with ∼omics data using Random Forest regression in potato
    Acharjee, Animesh
    Kloosterman, Bjorn
    de Vos, Ric C. H.
    Werij, Jeroen S.
    Bachem, Christian W. B.
    Visser, Richard G. F.
    Maliepaard, Chris
    ANALYTICA CHIMICA ACTA, 2011, 705 (1-2) : 56 - 63
  • [26] DOWNSCALING LAND SURFACE TEMPERATURE BY USING RANDOM FOREST REGRESSION ALGORITHM
    Li, Wan
    Ni, Li
    Li, Zhao-Liang
    Wu, Hua
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2527 - 2530
  • [27] Implicit surface reconstruction from noisy 3D scattered data
    Wang, Lihui
    Yuan, Baozong
    Tang, Xiaofang
    2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 1543 - +
  • [28] THE RECONSTRUCTION OF SHALLOW ROUGH-SURFACE PROFILES FROM SCATTERED FIELD DATA
    WOMBELL, RJ
    DESANTO, JA
    INVERSE PROBLEMS, 1991, 7 (01) : L7 - L12
  • [29] Light field reconstruction from scattered light using plenoptic data
    Sasaki, Takahiro
    Leger, James R.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2020, 37 (04) : 653 - 670
  • [30] Using scattered data interpolation for radiosity reconstruction
    Hinkenjann, A
    Pietrek, G
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 1998, : 715 - 720