INTERACTING MARKOV CHAIN MONTE CARLO METHODS FOR SOLVING NONLINEAR MEASURE-VALUED EQUATIONS

被引:6
|
作者
Del Moral, Pierre [1 ,5 ]
Doucet, Arnaud [2 ,3 ,4 ]
机构
[1] Univ Bordeaux, Ctr INRIA Bordeaux & Sud Ouest, F-33405 Talence, France
[2] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
[3] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z2, Canada
[4] Inst Stat Math, Minato Ku, Tokyo 1068569, Japan
[5] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
来源
ANNALS OF APPLIED PROBABILITY | 2010年 / 20卷 / 02期
关键词
Markov chain Monte Carlo methods; sequential Monte Carlo methods; self-interacting processes; time-inhomogeneous Markov chains; Metropolis-Hastings algorithm; Feynman-Kac formulae;
D O I
10.1214/09-AAP628
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a new class of interacting Markov chain Monte Carlo algorithms for solving numerically discrete-time measure-valued equations. The associated stochastic processes belong to the class of self-interacting Markov chains. In contrast to traditional Markov chains, their time evolutions depend on the occupation measure of their past values. This general methodology allows us to provide a natural way to sample from a sequence of target probability measures of increasing complexity. We develop an original theoretical analysis to analyze the behavior of these iterative algorithms which relies on measure-valued processes and semigroup techniques. We establish a variety of convergence results including exponential estimates and a uniform convergence theorem with respect to the number of target distributions. We also illustrate these algorithms in the context of Feynman-Kac distribution flows.
引用
收藏
页码:593 / 639
页数:47
相关论文
共 50 条
  • [1] On solving integral equations using Markov chain Monte Carlo methods
    Doucet, Arnaud
    Johansen, Adam M.
    Tadic, Vladislav B.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) : 2869 - 2880
  • [2] SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
    Brockwell, Anthony
    Del Moral, Pierre
    Doucet, Arnaud
    [J]. ANNALS OF STATISTICS, 2010, 38 (06): : 3387 - 3411
  • [3] Fluctuations of interacting Markov chain Monte Carlo methods
    Bercu, Bernard
    Del Moral, Pierre
    Doucet, Arnaud
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1304 - 1331
  • [4] A new class of interacting Markov chain Monte Carlo methods
    Del Moral, Pierre
    Doucet, Arnaud
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) : 79 - 83
  • [5] Interacting Particle Markov Chain Monte Carlo
    Rainforth, Tom
    Naesseth, Christian A.
    Lindsten, Fredrik
    Paige, Brooks
    van de Meent, Jan-Willem
    Doucet, Arnaud
    Wood, Frank
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [6] On nonlinear Markov chain Monte Carlo
    Andrieu, Christophe
    Jasra, Ajay
    Doucet, Arnaud
    Del Moral, Pierre
    [J]. BERNOULLI, 2011, 17 (03) : 987 - 1014
  • [7] Measure-Valued Differentiation for Markov Chains
    B. Heidergott
    F. J. Vázquez-Abad
    [J]. Journal of Optimization Theory and Applications, 2008, 136 : 187 - 209
  • [8] Measure-valued branching Markov processes
    Pap, Gyula
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2011, 77 (3-4): : 727 - 728
  • [9] Measure-valued differentiation for Markov chains
    Heidergott, B.
    Vazquez-Abad, F. J.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 136 (02) : 187 - 209
  • [10] Stochastic partial differential equations for a class of interacting measure-valued diffusions
    Dawson, DA
    Vaillancourt, J
    Wang, H
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (02): : 167 - 180