A new class of interacting Markov chain Monte Carlo methods

被引:1
|
作者
Del Moral, Pierre [1 ,2 ]
Doucet, Arnaud [3 ]
机构
[1] Univ Bordeaux, Ctr INRIA Bordeaux Sud Ouest, F-33405 Talence, France
[2] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
[3] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
D O I
10.1016/j.crma.2009.11.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new class of interacting Markov chain Monte Carlo methods to approximate numerically discrete-time nonlinear measure-valued equations. These stochastic processes belong to the class of self-interacting Markov chains with respect to their occupation measures. We provide several convergence results for these new methods including exponential estimates and a uniform convergence theorem with respect to the time parameter, yielding what seems to be the first results of this kind for this type of self-interacting models. We illustrate these models in the context of Feynman-Kac distribution semigroups arising in physics, biology and in statistics. (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:79 / 83
页数:5
相关论文
共 50 条
  • [1] SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
    Brockwell, Anthony
    Del Moral, Pierre
    Doucet, Arnaud
    ANNALS OF STATISTICS, 2010, 38 (06): : 3387 - 3411
  • [2] Fluctuations of interacting Markov chain Monte Carlo methods
    Bercu, Bernard
    Del Moral, Pierre
    Doucet, Arnaud
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1304 - 1331
  • [3] A Functional Central Limit Theorem for a Class of Interacting Markov Chain Monte Carlo Methods
    Bercu, Bernard
    Del Moral, Pierre
    Doucet, Arnaud
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 2130 - 2155
  • [4] Interacting Particle Markov Chain Monte Carlo
    Rainforth, Tom
    Naesseth, Christian A.
    Lindsten, Fredrik
    Paige, Brooks
    van de Meent, Jan-Willem
    Doucet, Arnaud
    Wood, Frank
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [5] Parallel and interacting Markov chain Monte Carlo algorithm
    Campillo, Fabien
    Rakotozafy, Rivo
    Rossi, Vivien
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (12) : 3424 - 3433
  • [6] An introduction to Markov chain Monte Carlo methods
    Besag, J
    MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [7] MARGINAL MARKOV CHAIN MONTE CARLO METHODS
    van Dyk, David A.
    STATISTICA SINICA, 2010, 20 (04) : 1423 - 1454
  • [8] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [9] The Evolution of Markov Chain Monte Carlo Methods
    Richey, Matthew
    AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (05): : 383 - 413
  • [10] CONVERGENCE OF ADAPTIVE AND INTERACTING MARKOV CHAIN MONTE CARLO ALGORITHMS
    Fort, G.
    Moulines, E.
    Priouret, P.
    ANNALS OF STATISTICS, 2011, 39 (06): : 3262 - 3289