Microwave Radiometer Data Superresolution Using Image Degradation and Residual Network

被引:17
|
作者
Hu, Ting [1 ]
Zhang, Feng [1 ]
Li, Wei [1 ]
Hu, Weidong [2 ]
Tao, Ran [1 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Fract Signals & Syst, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing Key Lab Millimeter Wave & Terahertz Techn, Beijing 100081, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Microwave radiometry; Degradation; Hybrid fiber coaxial cables; Spatial resolution; Microwave imaging; Microwave theory and techniques; Image degradation; radiometer data; residual network; superresolution (SR); SPATIAL-RESOLUTION ENHANCEMENT;
D O I
10.1109/TGRS.2019.2923886
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Microwave radiometers are the key sensors to globally monitor environmental parameters; however, it suffers from its low and nonuniform spatial resolution. In this paper, a superresolution (SR) technique based on image degradation and residual network is proposed to enhance the spatial resolution of microwave radiometer data. Specifically, an improved degradation model is proposed to construct pairs of high-resolution (HR) and low-resolution (LR) data for training and testing. In addition, a new residual network connected by the SR main and gradient auxiliary branches in parallel is designed to achieve SR reconstructions, where eight-channel gradient maps extracted from LR data are input into the auxiliary branch to help to reconstruct. SR results are eventually generated by the trained SR network. Experiments executed on both simulated and actual data demonstrate the soundness and the superiority of the proposed SR technique.
引用
收藏
页码:8954 / 8967
页数:14
相关论文
共 50 条
  • [41] Dynamic Data Updating Algorithm for Image Superresolution Reconstruction
    Tan Bing
    Xu Qing
    Zhang Yan
    Xing Shuai
    GEO-SPATIAL INFORMATION SCIENCE, 2006, 9 (03) : 196 - 200
  • [42] Image superresolution using support vector regression
    Ni, Karl S.
    Nguyen, Truong Q.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (06) : 1596 - 1610
  • [43] Dynamic Data Updating Algorithm for Image Superresolution Reconstruction
    TAN Bing XU Qing ZHANG Yan XING Shuai
    Geo-Spatial Information Science, 2006, (03) : 196 - 200
  • [44] Superresolution Image Reconstruction Using Panchromatic and Multispectral Image Fusion
    Elbakary, M. I.
    Alam, M. S.
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING II, 2008, 7072
  • [45] Spatial resolution enhancement of microwave scanning radiometer data
    Migliaccio, M
    Gambardella, A
    Theis, D
    Oceans 2005 - Europe, Vols 1 and 2, 2005, : 663 - 668
  • [46] WIENER FILTERING OF THE COBE DIFFERENTIAL MICROWAVE RADIOMETER DATA
    BUNN, EF
    FISHER, KB
    HOFFMAN, Y
    LAHAV, O
    SILK, J
    ZAROUBI, S
    ASTROPHYSICAL JOURNAL, 1994, 432 (02): : L75 - &
  • [47] FUSION AND INVERSION OF SAR DATA TO OBTAIN A SUPERRESOLUTION IMAGE
    Mohammad-Djafari, Ali
    Daout, Franck
    Fargette, Philippe
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 569 - +
  • [48] MICROWAVE BRIGHTNESS TEMPERATURE DISTRIBUTION OVER THE BAY OF BENGAL USING THE SATELLITE MICROWAVE RADIOMETER (SAMIR) DATA.
    Calla, O.P.N.
    Raju, G.
    Rana, S.S.
    Balasubramanian, S.
    IETE Journal of Research, 1980, 26 (05) : 243 - 247
  • [49] Superresolution Reconstruction of Multispectral Data for Improved Image Classification
    Li, Feng
    Jia, Xiuping
    Fraser, Donald
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) : 689 - 693
  • [50] Detection of Snowmelt Using Spaceborne Microwave Radiometer Data in Eurasia From 1979 to 2007
    Takala, Matias
    Pulliainen, Jouni
    Metsamaki, Sari J.
    Koskinen, Jarkko T.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (09): : 2996 - 3007