ADVANCES IN ESTIMATING COVARIANCE MATRICES

被引:0
|
作者
Menchero, Jose [1 ]
Ji, Lei [2 ]
机构
[1] Bloomberg, Portfolio Analyt Res, New York, NY 10022 USA
[2] Portfolio Analyt Res, New York, NY USA
来源
JOURNAL OF INVESTMENT MANAGEMENT | 2021年 / 19卷 / 03期
关键词
Portfolio optimization; covariance matrices; sampling error; shrinkage; principle component analysis; integrated factor models; multi-asset-class risk models;
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Correlation matrices are widely used in finance both for risk forecasting and for portfolio optimization. It is well known that the sample correlation matrix is unreliable for portfolio optimization. However, we show that for purposes of predicting portfolio risk, the sample correlation matrix is close to optimal. In this paper, we present a technique for estimating correlations that is well suited both for risk forecasting and for portfolio optimization. We apply our technique to estimate factor correlation matrices spanning different asset classes. We find that our technique produces improved correlation estimates compared to an alternative widely used approach.
引用
收藏
页码:60 / 80
页数:21
相关论文
共 50 条
  • [22] HighFrequencyCovariance: A Julia Package for Estimating Covariance Matrices Using High Frequency Financial Data
    Baumann, Stuart
    Klymak, Margaryta
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2022, 103 (14): : 1 - 25
  • [23] Estimating high-dimensional covariance and precision matrices under general missing dependence
    Park, Seongoh
    Wang, Xinlei
    Lim, Johan
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 4868 - 4915
  • [24] On variable ordination of modified Cholesky decomposition for estimating time-varying covariance matrices
    Kang, Xiaoning
    Deng, Xinwei
    Tsui, Kam-Wah
    Pourahmadi, Mohsen
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2020, 88 (03) : 616 - 641
  • [25] ESTIMATING HIGH-DIMENSIONAL COVARIANCE MATRICES WITH MISSES FOR KRONECKER PRODUCT EXPANSION MODELS
    Zamanighomi, Mandi
    Wang, Zhengdao
    Giannakis, Georgios B.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2667 - 2671
  • [26] UNIVERSALITY OF COVARIANCE MATRICES
    Pillai, Natesh S.
    Yin, Jun
    [J]. ANNALS OF APPLIED PROBABILITY, 2014, 24 (03): : 935 - 1001
  • [27] Covariance matrices and valuations
    Ludwig, Monika
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (03) : 359 - 366
  • [28] ESTIMATION OF COVARIANCE MATRICES
    KOSHEVOY, VM
    [J]. RADIOTEKHNIKA I ELEKTRONIKA, 1986, 31 (10): : 1964 - 1974
  • [29] Ordering of covariance matrices
    Neudecker, H
    Cappuccio, N
    Lubian, D
    [J]. ECONOMETRIC THEORY, 1996, 12 (04) : 746 - 748
  • [30] PROPORTIONALITY OF COVARIANCE MATRICES
    ERIKSEN, PS
    [J]. ANNALS OF STATISTICS, 1987, 15 (02): : 732 - 748