Temperature Effect on Interfacial Structure and Dynamics Properties in Polymer/Single-Chain Nanoparticle Composite

被引:13
|
作者
Jia, Xiang-Meng [1 ,2 ]
Shi, Rui [1 ,2 ]
Jiao, Gui-Sheng [1 ,2 ]
Chen, Tao [1 ,2 ]
Qian, Hu-Jun [1 ,2 ]
Lu, Zhong-Yuan [1 ,2 ]
机构
[1] Jilin Univ, Inst Theoret Chem, State Key Lab Supramolecular Struct & Mat, Changchun 130023, Peoples R China
[2] Jilin Univ, Inst Theoret Chem, Lab Theoret & Computat Chem, Changchun 130023, Peoples R China
基金
中国国家自然科学基金;
关键词
cross-linking; molecular dynamics; nanocomposites; simulations; MOLECULAR-DYNAMICS; ATACTIC POLYSTYRENE; ATOMISTIC SIMULATIONS; SEGMENTAL DYNAMICS; LINEAR-POLYMERS; FORCE-FIELD; NANOCOMPOSITES; CONFORMATION; NONCOVALENT; INTERPHASE;
D O I
10.1002/macp.201700029
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Interface structure and dynamics properties in an all-polystyrene composite composed of linear chains and one single-chain nanoparticle (SCNP) are investigated by using large-scale molecular dynamics simulations at both coarse-grained and full atomistic level. It is demonstrated that the SCNP adopts a crumpled globular state in composite; it has layered internal structures especially at low temperatures. When temperature decreases, its interior phenyl rings (iPRs) are parallel to each other and scaffold cross-linking bonds undergo a "loose-to-tight" transition, leading to a "soft-to-hard" transition of the SCNP. Such transition provides more interior free volume and therefore results in faster rotational relaxation of inner layer iPRs at low temperature. It also facilitates the infiltration of the matrix monomers, resulting in an enhanced interfacial correlation and therefore a stronger deceleration effect in diffusion of matrix monomers at low temperatures. These results provide new insights into unique structure and dynamics properties at the polymer/SCNP interface region.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Scalable Synthesis of Janus Single-chain/Nanoparticle Hybrids
    Li, Feng-lin
    Yang, Ya-jing
    Sun, Da-yin
    Ye, Yi-lan
    Yang, Zhen-zhong
    ACTA POLYMERICA SINICA, 2025, 56 (01): : 114 - 123
  • [32] Advances in Click Chemistry for Single-Chain Nanoparticle Construction
    Sanchez-Sanchez, Ana
    Perez-Baena, Irma
    Pomposo, Jose A.
    MOLECULES, 2013, 18 (03) : 3339 - 3355
  • [33] Single-chain polymer nanoparticles in biomedical applications
    Hamelmann, Naomi M.
    Paulusse, Jos M. J.
    JOURNAL OF CONTROLLED RELEASE, 2023, 356 : 26 - 42
  • [34] Separation and characterization of single-chain polymer particles
    Festag, R
    Wunderlich, B
    Joy, DC
    Alexandratos, SD
    Cook, KD
    SPACE PROCESSING OF MATERIALS, 1996, 2809 : 155 - 165
  • [35] Cytosolic Delivery of Single-Chain Polymer Nanoparticles
    Hamelmann, Naomi M.
    Paats, Jan-Willem D.
    Paulusse, Jos M. J.
    ACS MACRO LETTERS, 2021, 10 (11) : 1443 - 1449
  • [36] Dynamic Covalent Single-Chain Polymer Nanoparticles
    Murray, Benjamin S.
    Fulton, David A.
    MACROMOLECULES, 2011, 44 (18) : 7242 - 7252
  • [37] Single-chain polymer nanoparticles: Mimic the proteins
    Huo, Meng
    Wang, Niejun
    Fang, Tommy
    Sun, Mengzhen
    Wei, Yen
    Yuan, Jinying
    POLYMER, 2015, 66 : A11 - A21
  • [38] Excluded-volume corrections to the single-chain static properties of a polymer melt: Temperature, density and potential effects
    Ottochian, A.
    Leporini, D.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2007, 353 (41-43) : 3879 - 3884
  • [39] Single-Chain Nanoparticle-Based Coatings with Improved Bactericidal Activity and Antifouling Properties
    Tian, Xinyun
    Xue, Ruizhong
    Yang, Fangping
    Yin, Lichen
    Luan, Shifang
    Tang, Haoyu
    BIOMACROMOLECULES, 2021, 22 (10) : 4306 - 4315
  • [40] SINGLE-CHAIN TRIPLE HELICAL STRUCTURE
    RAMACHANDRAN, GN
    DOYLE, BB
    BLOUT, ER
    BIOPOLYMERS, 1968, 6 (12) : 1771 - +