Bounds on the number of inference functions of a graphical model

被引:0
|
作者
Elizalde, Sergi [1 ]
Woods, Kevin
机构
[1] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
[2] Oberlin Coll, Dept Math, Oberlin, OH 44074 USA
关键词
graphical models; hidden Markov models; inference functions; polytopes;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Directed and undirected graphical models, also called Bayesian networks and Markov random fields, respectively, are important statistical tools in a wide variety of fields, ranging from computational biology to probabilistic artificial intelligence. We give an upper bound on the number of inference functions of any graphical model. This bound is polynomial on the size of the model, for a fixed number of parameters. We also show that our bound is tight up to a constant factor, by constructing a family of hidden Markov models whose number of inference functions agrees asymptotically with the upper bound. This paper elaborates and expands on results of the first author from Elizalde (2005).
引用
收藏
页码:1395 / 1415
页数:21
相关论文
共 50 条
  • [41] ACE: adaptive cluster expansion for maximum entropy graphical model inference
    Barton, J. P.
    De Leonardis, E.
    Coucke, A.
    Cocco, S.
    [J]. BIOINFORMATICS, 2016, 32 (20) : 3089 - 3097
  • [42] Prediction and prevention of pandemics via graphical model inference and convex programming
    Krechetov, Mikhail
    Sikaroudi, Amir Mohammad Esmaieeli
    Efrat, Alon
    Polishchuk, Valentin
    Chertkov, Michael
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [43] TRACKING USING BAYESIAN INFERENCE WITH A TWO-LAYER GRAPHICAL MODEL
    Rehrl, T.
    Thessing, N.
    Bannat, A.
    Gast, J.
    Arsic, D.
    Wallhoff, F.
    Rigoll, G.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 3961 - 3964
  • [44] Prediction and prevention of pandemics via graphical model inference and convex programming
    Mikhail Krechetov
    Amir Mohammad Esmaieeli Sikaroudi
    Alon Efrat
    Valentin Polishchuk
    Michael Chertkov
    [J]. Scientific Reports, 12
  • [45] State Estimation via Inference on a Probabilistic Graphical Model - A Different Perspective
    Myers, Luke
    Wang, Binghui
    Gong, Neil Zhenqiang
    Qiao, Daji
    [J]. 2020 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2020,
  • [46] COMBINATORIAL INFERENCE FOR GRAPHICAL MODELS
    Neykov, Matey
    Lu, Junwei
    Liu, Han
    [J]. ANNALS OF STATISTICS, 2019, 47 (02): : 795 - 827
  • [47] A graphical approach to relatedness inference
    Almudevar, Anthony
    [J]. THEORETICAL POPULATION BIOLOGY, 2007, 71 (02) : 213 - 229
  • [48] GRAPHICAL REPRESENTATION FOR NONPARAMETRIC INFERENCE
    HETTMANSPERGER, TP
    MCKEAN, JW
    [J]. AMERICAN STATISTICIAN, 1974, 28 (03): : 100 - 102
  • [49] Diagrammatic inference and graphical proof
    Pineda, LA
    [J]. LOGICAL AND COMPUTATIONAL ASPECTS OF MODEL-BASED REASONING, 2002, 25 : 73 - 91
  • [50] Graphical Inference in Geographical Research
    Widen, Holly M.
    Elsner, James B.
    Pau, Stephanie
    Uejio, Christopher K.
    [J]. GEOGRAPHICAL ANALYSIS, 2016, 48 (02) : 115 - 131