Hopf bimodules are modules

被引:17
|
作者
Cibils, C [1 ]
Rosso, M
机构
[1] Univ Montpellier 2, Dept Math, F-34095 Montpellier 5, France
[2] Univ Strasbourg 1, IRMA, F-67084 Strasbourg, France
关键词
D O I
10.1016/S0022-4049(97)00060-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct an algebra X associated to a finite-dimensional Hopf algebra A, such that there exists a vector space-preserving equivalence of categories between the categories of Hopf bimodules over A and of left X-modules. We show that X is isomorphic to the direct tenser product of the Heisenberg double of A and the opposite of its Drinfeld double. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 50 条
  • [21] UNIFYING HOPF MODULES
    DOI, Y
    [J]. JOURNAL OF ALGEBRA, 1992, 153 (02) : 373 - 385
  • [22] On Braided Lie Structures of Algebras in the Categories of Weak Hopf Bimodules
    Wang, Shuan-hong
    Zhu, Hai-xing
    [J]. ALGEBRA COLLOQUIUM, 2010, 17 (04) : 685 - 698
  • [23] Hopf modules and their duals
    Borowiec, AZ
    Coutiño, GAV
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (01) : 67 - 80
  • [24] Bialgebras over noncommutative rings and a structure theorem for Hopf bimodules
    Schauenburg, P
    [J]. APPLIED CATEGORICAL STRUCTURES, 1998, 6 (02) : 193 - 222
  • [25] The fundamental theorem of Hopf modules for Hopf braces
    Rodriguez, R. Gonzalez
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5146 - 5156
  • [27] STRONG HOPF MODULES FOR WEAK HOPF QUASIGROUPS
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    [J]. COLLOQUIUM MATHEMATICUM, 2017, 148 (02) : 231 - 246
  • [28] Bialgebras Over Noncommutative Rings and a Structure Theorem for Hopf Bimodules
    Peter Schauenburg
    [J]. Applied Categorical Structures, 1998, 6 : 193 - 222
  • [29] THE STRUCTURE THEOREM OF HOM-HOPF BIMODULES AND ITS APPLICATIONS
    Zheng, Huihui
    Chen, Yuanyuan
    Zhang, Liangyun
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2021, 30 : 78 - 98
  • [30] Crossed modules and doi-hopf modules
    S. Caenepeel
    G. Militaru
    Zhu Shenglin
    [J]. Israel Journal of Mathematics, 1997, 100 : 221 - 247