A priori and a posteriori error estimates for the quad-curl eigenvalue problem

被引:5
|
作者
Wang, Lixiu [1 ,2 ]
Zhang, Qian [3 ]
Sun, Jiguang [3 ]
Zhang, Zhimin [2 ,4 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金;
关键词
The quad-curl problem; eigenvalue problem; a priori error estimation; a posteriori error estimation; curl-curl conforming elements; FINITE-ELEMENT-METHOD; HODGE DECOMPOSITION; MULTIGRID METHODS; GALERKIN METHOD; APPROXIMATION; EQUATIONS;
D O I
10.1051/m2an/2022027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a priori and a posteriori error estimates of the H(curl(2))-conforming finite element when solving the quad-curl eigenvalue problem. An a priori estimate of eigenvalues with convergence order 2(s - 1) is obtained if the corresponding eigenvector u is an element of H (s - 1)(omega) and backward difference x u is an element of H (s) (omega). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the errors of eigenvectors in the energy norm and upper bounds for the errors of eigenvalues. Numerical examples are presented for validation.
引用
收藏
页码:1027 / 1051
页数:25
相关论文
共 50 条
  • [41] A Posteriori Estimates for the Stokes Eigenvalue Problem
    Lovadina, Carlo
    Lyly, Mikko
    Stenberg, Rolf
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (01) : 244 - 257
  • [42] H(CURL2)-CONFORMING FINITE ELEMENTS IN 2 DIMENSIONS AND APPLICATIONS TO THE QUAD-CURL PROBLEM
    Zhang, Qian
    Wang, Lixiu
    Zhang, Zhimin
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : A1527 - A1547
  • [43] A posteriori error estimates of the Morley element for the fourth order elliptic eigenvalue problem
    Quan Shen
    [J]. Numerical Algorithms, 2015, 68 : 455 - 466
  • [44] A posteriori error estimates of the Morley element for the fourth order elliptic eigenvalue problem
    Shen, Quan
    [J]. NUMERICAL ALGORITHMS, 2015, 68 (03) : 455 - 466
  • [45] A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator
    Huang, Pengzhan
    Zhang, Qiuyu
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (03): : 295 - 304
  • [46] Robust mixed finite element methods for a quad-curl singular perturbation problem
    Huang, Xuehai
    Zhang, Chao
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [47] A Quadratic C0 Interior Penalty Method for the Quad-Curl Problem
    Sun, Zhengjia
    Gao, Fuzheng
    Wang, Chao
    Zhang, Yi
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (02) : 208 - 225
  • [48] A Hodge Decomposition Finite Element Method for the Quad-Curl Problem on Polyhedral Domains
    Brenner, Susanne C.
    Cavanaugh, Casey
    Sung, Li-yeng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (03)
  • [49] A Priori and a Posteriori Error Estimates for H(div)-Elliptic Problem with Interior Penalty Method
    Zeng, Yuping
    Chen, Jinru
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (03) : 753 - 779
  • [50] Spectral Element Methods a Priori and a Posteriori Error Estimates for Penalized Unilateral Obstacle Problem
    Bochra Djeridi
    Radouen Ghanem
    Hocine Sissaoui
    [J]. Journal of Scientific Computing, 2020, 85