Modular Random Boolean Networks

被引:20
|
作者
Poblanno-Balp, Rodrigo [1 ,2 ]
Gershenson, Carlos [1 ,2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Mexico City 04510, DF, Mexico
关键词
Modularity; criticality; topology; random Boolean networks; genetic regulatory networks; PHASE-TRANSITIONS; ROBUSTNESS; REDUNDANCY; DYNAMICS; CHAOS;
D O I
10.1162/artl_a_00042
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Random Boolean networks (RBNs) have been a popular model of genetic regulatory networks for more than four decades. However, most RBN studies have been made with random topologies, while real regulatory networks have been found to be modular. In this work, we extend classical RBNs to define modular RBNs. Statistical experiments and analytical results show that modularity has a strong effect on the properties of RBNs. In particular, modular RBNs have more attractors, and are closer to criticality when chaotic dynamics would be expected, than classical RBNs.
引用
收藏
页码:331 / 351
页数:21
相关论文
共 50 条
  • [21] Compositional properties of random Boolean networks
    Dubrova, E
    Teslenko, M
    [J]. PHYSICAL REVIEW E, 2005, 71 (05):
  • [22] Quantifying the complexity of random Boolean networks
    Gong, Xinwei
    Socolar, Joshua E. S.
    [J]. PHYSICAL REVIEW E, 2012, 85 (06):
  • [23] Control of random Boolean networks via average sensitivity of Boolean functions
    陈士剑
    洪奕光
    [J]. Chinese Physics B, 2011, 20 (03) : 351 - 357
  • [24] Control of random Boolean networks via average sensitivity of Boolean functions
    Chen Shi-Jian
    Hong Yi-Guang
    [J]. CHINESE PHYSICS B, 2011, 20 (03)
  • [25] Optimal Control Rules for Random Boolean Networks
    Karlsen, Matthew R.
    Moschoyiannis, Sotiris K.
    [J]. COMPLEX NETWORKS AND THEIR APPLICATIONS VII, VOL 1, 2019, 812 : 828 - 840
  • [26] Stochastic coupling of two random Boolean networks
    Ho, MC
    Hung, YC
    Jiang, IM
    [J]. PHYSICS LETTERS A, 2005, 344 (01) : 36 - 42
  • [27] Influence and Dynamic Behavior in Random Boolean Networks
    Seshadhri, C.
    Vorobeychik, Yevgeniy
    Mayo, Jackson R.
    Armstrong, Robert C.
    Ruthruff, Joseph R.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (10)
  • [28] Relevant components in critical random Boolean networks
    Kaufman, Viktor
    Drossel, Barbara
    [J]. NEW JOURNAL OF PHYSICS, 2006, 8
  • [29] A Computational Model Based on Random Boolean Networks
    Dubrova, Elena
    Teslenko, Maxim
    Tenhunen, Hannu
    [J]. 2007 2ND BIO-INSPIRED MODELS OF NETWORKS, INFORMATION AND COMPUTING SYSTEMS (BIONETICS), 2007, : 23 - 30
  • [30] ON FORCING FUNCTIONS IN KAUFFMAN RANDOM BOOLEAN NETWORKS
    STAUFFER, D
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (3-4) : 789 - 794